Scaling Image Tokenizers with Grouped Spherical Quantization
Paper link | GITHUB REPO HF Checkpoints
In GSQ, we show the optimized training hyper-parameters and configs for quantization based image tokenizer. We also show how to scale the latent, vocab size etc. appropriately to achieve better reconstruction performance.
We also show how to scaling the latent (and group) appropriately when pursuing high down-sample ratio in compression.
The group scaling experiment of GSQ:
Models | ( G $\times$ d ) | rFID ↓ | IS ↑ | LPIPS ↓ | PSNR ↑ | SSIM ↑ | Usage ↑ | PPL ↑ |
---|---|---|---|---|---|---|---|---|
GSQ F8-D64 ( V=8K ) | ( 1 $\times$ 64 ) | 0.63 | 205 | 0.08 | 22.95 | 0.67 | 99.87% | 8,055 |
( 2 $\times$ 32 ) | 0.32 | 220 | 0.05 | 25.42 | 0.76 | 100% | 8,157 | |
( 4 $\times$ 16 ) | 0.18 | 226 | 0.03 | 28.02 | 0.08 | 100% | 8,143 | |
( 16 $\times$ 4 ) | 0.03 | 233 | 0.004 | 34.61 | 0.91 | 99.98% | 6,775 | |
GSQ F16-D16 ( V=256K ) | ( 1 $\times$ 16 ) | 1.42 | 179 | 0.13 | 20.70 | 0.56 | 100% | 254,044 |
( 2 $\times$ 8 ) | 0.82 | 199 | 0.09 | 22.20 | 0.63 | 100% | 257,273 | |
( 4 $\times$ 4 ) | 0.74 | 202 | 0.08 | 22.75 | 0.63 | 62.46% | 43,767 | |
( 8 $\times$ 2 ) | 0.50 | 211 | 0.06 | 23.62 | 0.66 | 46.83% | 22,181 | |
( 16 $\times$ 1 ) | 0.52 | 210 | 0.06 | 23.54 | 0.66 | 50.81% | 181 | |
( 16 $\times$ 1^* ) | 0.51 | 210 | 0.06 | 23.52 | 0.66 | 52.64% | 748 | |
GSQ F32-D32 ( V=256K ) | ( 1 $\times$ 32 ) | 6.84 | 95 | 0.24 | 17.83 | 0.40 | 100% | 245,715 |
( 2 $\times$ 16 ) | 3.31 | 139 | 0.18 | 19.01 | 0.47 | 100% | 253,369 | |
( 4 $\times$ 8 ) | 1.77 | 173 | 0.13 | 20.60 | 0.53 | 100% | 253,199 | |
( 8 $\times$ 4 ) | 1.67 | 176 | 0.12 | 20.88 | 0.54 | 59% | 40,307 | |
( 16 $\times$ 2 ) | 1.13 | 190 | 0.10 | 21.73 | 0.57 | 46% | 30,302 | |
( 32 $\times$ 1 ) | 1.21 | 187 | 0.10 | 21.64 | 0.57 | 54% | 247 |
Use Pre-trained GSQ-Tokenizer
from flex_gen import autoencoders
from timm import create_model
# ============= From HF's repo
model=create_model('flexTokenizer', pretrained=True,
repo_id='HelmholtzAI-FZJ/GSQ-F8-D8-V64k',)
# ============= From Local Checkpoint
model=create_model('flexTokenizer', pretrained=True,
path='PATH/your_checkpoint.pt', )
Training your tokenizer
Set-up Python Virtual Environment
sh gen_env/setup.sh
source ./gen_env/activate.sh
#! This will run pip install to download all required lib
sh ./gen_env/install_requirements.sh
Run Training
# Single GPU
python -W ignore ./scripts/train_autoencoder.py
# Multi GPU
torchrun --nnodes=1 --nproc_per_node=4 ./scripts/train_autoencoder.py --config-file=PATH/config_name.yaml \
--output_dir=./logs_test/test opts train.num_train_steps=100 train_batch_size=16
Run Evaluation
Add the checkpoint path that your want to test in evaluation/run_tokenizer_eval.sh
# For example
...
configs_of_training_lists=()
configs_of_training_lists=("logs_test/test/")
...
And run sh evaluation/run_tokenizer_eval.sh
it will automatically scan folder/model/eval_xxx.pth
for tokenizer evaluation
Citation
@misc{GSQ,
title={Scaling Image Tokenizers with Grouped Spherical Quantization},
author={Jiangtao Wang and Zhen Qin and Yifan Zhang and Vincent Tao Hu and Björn Ommer and Rania Briq and Stefan Kesselheim},
year={2024},
eprint={2412.02632},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2412.02632},
}