plain_tig / README.md
Hellina's picture
Model save
23ceb8c verified
metadata
base_model: castorini/afriteva_v2_base
library_name: peft
license: apache-2.0
metrics:
  - accuracy
tags:
  - generated_from_trainer
model-index:
  - name: plain_tig
    results: []

plain_tig

This model is a fine-tuned version of castorini/afriteva_v2_base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3508
  • Accuracy: {'accuracy': 0.1460214446952596}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 64
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy
4.8624 2.3810 100 2.5503 {'accuracy': 0.11554740406320542}
2.5725 4.7619 200 1.7106 {'accuracy': 0.13755643340857787}
1.936 7.1429 300 1.5616 {'accuracy': 0.14094243792325056}
1.804 9.5238 400 1.5510 {'accuracy': 0.14122460496613995}
1.755 11.9048 500 1.5 {'accuracy': 0.14094243792325056}
1.6713 14.2857 600 1.4747 {'accuracy': 0.14051918735891647}
1.624 16.6667 700 1.4347 {'accuracy': 0.14193002257336343}
1.5757 19.0476 800 1.4028 {'accuracy': 0.14432844243792325}
1.5407 21.4286 900 1.3813 {'accuracy': 0.14475169300225735}
1.5199 23.8095 1000 1.3686 {'accuracy': 0.1451749435665914}
1.4855 26.1905 1100 1.3569 {'accuracy': 0.14531602708803612}
1.4744 28.5714 1200 1.3508 {'accuracy': 0.1460214446952596}

Framework versions

  • PEFT 0.7.1
  • Transformers 4.43.3
  • Pytorch 2.4.0+cu121
  • Datasets 2.15.0
  • Tokenizers 0.19.1