|
--- |
|
library_name: setfit |
|
tags: |
|
- setfit |
|
- sentence-transformers |
|
- text-classification |
|
- generated_from_setfit_trainer |
|
metrics: |
|
- accuracy |
|
widget: |
|
- text: Buses are more simple - you just buy a ticket . |
|
- text: As citizens of village , we totally care about environment of our village |
|
. |
|
- text: So , finally I suggest that it would be a great idea to combine the different |
|
types of activities , both popular and the newest . |
|
- text: Had 12 years old . |
|
- text: On the other hand , I have the theoretical knowledge to use new the technologies |
|
this great project requires . |
|
pipeline_tag: text-classification |
|
inference: true |
|
base_model: sentence-transformers/paraphrase-mpnet-base-v2 |
|
model-index: |
|
- name: SetFit with sentence-transformers/paraphrase-mpnet-base-v2 |
|
results: |
|
- task: |
|
type: text-classification |
|
name: Text Classification |
|
dataset: |
|
name: Unknown |
|
type: unknown |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 0.13152173913043477 |
|
name: Accuracy |
|
--- |
|
|
|
# SetFit with sentence-transformers/paraphrase-mpnet-base-v2 |
|
|
|
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) as the Sentence Transformer embedding model. A [SetFitHead](huggingface.co/docs/setfit/reference/main#setfit.SetFitHead) instance is used for classification. |
|
|
|
The model has been trained using an efficient few-shot learning technique that involves: |
|
|
|
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. |
|
2. Training a classification head with features from the fine-tuned Sentence Transformer. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** SetFit |
|
- **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) |
|
- **Classification head:** a [SetFitHead](huggingface.co/docs/setfit/reference/main#setfit.SetFitHead) instance |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Number of Classes:** 8 classes |
|
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) |
|
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) |
|
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) |
|
|
|
### Model Labels |
|
| Label | Examples | |
|
|:------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| |
|
| 7 | <ul><li>"When I 've had a very bad and stressful day I can relax doing karate , because It 's the kind of sport that it is n't very hard ."</li><li>"Also , you 'll meet friendly people who usually ask to you something to be friends and change your telephone number ."</li><li>'When I have spare time , I often gather my friends to watch basketball match on television .'</li></ul> | |
|
| 4 | <ul><li>"stop shouting . do n't shout ."</li><li>'Yours Sincerely .'</li><li>'Something that they don know was that the whole thing was a movie !'</li></ul> | |
|
| 1 | <ul><li>'She stay sleeping in the bed and doing nothing all day .'</li><li>'People collects trash of their house and await the trash truck that carried the trash to a landfill located outside the village .'</li><li>"Travelling by car is n't so much more convenient unless it is so much more comfortable , but actually we do n't think about the contamination in our planet ."</li></ul> | |
|
| 6 | <ul><li>'When the concert finished , we went to cloakroom to get signatures from musicians .'</li><li>'We have solar panels and a place to make compost at the last garden , with worms who eat and degrade all the organic waste of the school .'</li><li>'The aim of this report is to give you my personal point of view of the course I did in your branch in Madrid last month .'</li></ul> | |
|
| 5 | <ul><li>'You can also bought a lot of gifts like key chains , statue , or what else memories to be made before returning to Malaysia .'</li><li>'I always said that I passed that test and I was sure of that .'</li><li>'In addition , to decrease the risk of negative comments or posts , Facebook and Twitter would improve their futures to solve the less personal privacy problem .'</li></ul> | |
|
| 2 | <ul><li>'They were not only really clever people but also excellent co - workers .'</li><li>'On balance , learning foreign languages is very positive on different aspect , so if you have the positivity of learning a new language do it , because it will bring you many benefits .'</li><li>'In many years of work I have honed my skills in managing non - standard situations , analyzing the problem , finding and implementing practical and easy solutions .'</li></ul> | |
|
| 0 | <ul><li>'It is very funny .'</li><li>'In China , English is took to be a foreign language which many students choose to learn .'</li><li>'We also value that they have specialised studies in Cloud technology , and hosting management .'</li></ul> | |
|
| 3 | <ul><li>"Usually there are generation problems , sons do n't understand parents and vicecersa , but dialoging and listening emotions and facts , everyone can have another point of view ."</li><li>'the two boys heard that he was planing to steal some money and kill people so the boys start their adventure on stoping Injuin Joe ...'</li><li>'As an example , if you are able to get alone with your travel companion could enjoy each moment of the trip , exchange some pictures , eat together , and visit places with common interest such as museums or malls .'</li></ul> | |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
| Label | Accuracy | |
|
|:--------|:---------| |
|
| **all** | 0.1315 | |
|
|
|
## Uses |
|
|
|
### Direct Use for Inference |
|
|
|
First install the SetFit library: |
|
|
|
```bash |
|
pip install setfit |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
|
|
```python |
|
from setfit import SetFitModel |
|
|
|
# Download from the 🤗 Hub |
|
model = SetFitModel.from_pretrained("HelgeKn/BEA2019-multi-class-4") |
|
# Run inference |
|
preds = model("Had 12 years old .") |
|
``` |
|
|
|
<!-- |
|
### Downstream Use |
|
|
|
*List how someone could finetune this model on their own dataset.* |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Set Metrics |
|
| Training set | Min | Median | Max | |
|
|:-------------|:----|:--------|:----| |
|
| Word count | 3 | 19.1562 | 42 | |
|
|
|
| Label | Training Sample Count | |
|
|:------|:----------------------| |
|
| 0 | 4 | |
|
| 1 | 4 | |
|
| 2 | 4 | |
|
| 3 | 4 | |
|
| 4 | 4 | |
|
| 5 | 4 | |
|
| 6 | 4 | |
|
| 7 | 4 | |
|
|
|
### Training Hyperparameters |
|
- batch_size: (16, 16) |
|
- num_epochs: (2, 2) |
|
- max_steps: -1 |
|
- sampling_strategy: oversampling |
|
- num_iterations: 20 |
|
- body_learning_rate: (2e-05, 2e-05) |
|
- head_learning_rate: 2e-05 |
|
- loss: CosineSimilarityLoss |
|
- distance_metric: cosine_distance |
|
- margin: 0.25 |
|
- end_to_end: False |
|
- use_amp: False |
|
- warmup_proportion: 0.1 |
|
- seed: 42 |
|
- eval_max_steps: -1 |
|
- load_best_model_at_end: False |
|
|
|
### Training Results |
|
| Epoch | Step | Training Loss | Validation Loss | |
|
|:------:|:----:|:-------------:|:---------------:| |
|
| 0.0125 | 1 | 0.1886 | - | |
|
| 0.625 | 50 | 0.0778 | - | |
|
| 1.25 | 100 | 0.0194 | - | |
|
| 1.875 | 150 | 0.0069 | - | |
|
|
|
### Framework Versions |
|
- Python: 3.9.13 |
|
- SetFit: 1.0.1 |
|
- Sentence Transformers: 2.2.2 |
|
- Transformers: 4.36.0 |
|
- PyTorch: 2.1.1+cpu |
|
- Datasets: 2.15.0 |
|
- Tokenizers: 0.15.0 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
```bibtex |
|
@article{https://doi.org/10.48550/arxiv.2209.11055, |
|
doi = {10.48550/ARXIV.2209.11055}, |
|
url = {https://arxiv.org/abs/2209.11055}, |
|
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, |
|
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, |
|
title = {Efficient Few-Shot Learning Without Prompts}, |
|
publisher = {arXiv}, |
|
year = {2022}, |
|
copyright = {Creative Commons Attribution 4.0 International} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |