whisper-small-dv / README.md
HaythamB's picture
End of training
a3466d4 verified
metadata
library_name: transformers
license: apache-2.0
base_model: openai/whisper-tiny
tags:
  - generated_from_trainer
datasets:
  - PolyAI/minds14
metrics:
  - wer
model-index:
  - name: whisper-small-dv
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: PolyAI/minds14
          type: PolyAI/minds14
          config: en-US
          split: train
          args: en-US
        metrics:
          - name: Wer
            type: wer
            value: 0.3010625737898465

whisper-small-dv

This model is a fine-tuned version of openai/whisper-tiny on the PolyAI/minds14 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5722
  • Wer Ortho: 0.3023
  • Wer: 0.3011

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: constant_with_warmup
  • lr_scheduler_warmup_steps: 2
  • training_steps: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Ortho Wer
No log 0.0714 2 0.5676 0.3140 0.3158
No log 0.1429 4 0.5642 0.3054 0.3076
No log 0.2143 6 0.5657 0.3004 0.3017
No log 0.2857 8 0.5681 0.3023 0.3034
No log 0.3571 10 0.5722 0.3023 0.3011

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.4.0+cpu
  • Datasets 3.1.0
  • Tokenizers 0.20.3