whisper-small-ar / README.md
Hatimdz's picture
End of training
1ed062d
metadata
language:
  - ar
license: apache-2.0
base_model: openai/whisper-small
tags:
  - hf-asr-leaderboard
  - generated_from_trainer
datasets:
  - sermonar
metrics:
  - wer
model-index:
  - name: whisper small ar
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: sermonarr
          type: sermonar
          config: ar
          split: test[:2%]
          args: 'config: ar, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 150.6172839506173

whisper small ar

This model is a fine-tuned version of openai/whisper-small on the sermonarr dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5258
  • Wer: 150.6173

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 4000

Training results

Training Loss Epoch Step Validation Loss Wer
0.8749 0.32 1000 0.5855 150.4274
0.6537 0.65 2000 0.5461 130.5793
0.7103 0.97 3000 0.5241 278.2526
0.6544 1.29 4000 0.5258 150.6173

Framework versions

  • Transformers 4.32.0.dev0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.3
  • Tokenizers 0.13.3