Hasano20's picture
Model save
01c57c3 verified
metadata
license: other
base_model: nvidia/mit-b5
tags:
  - generated_from_trainer
model-index:
  - name: SegFormer_mit-b5_Final-Set4-Grayscale_On-the-fly-Augmented_batch8_lr0.0002
    results: []

SegFormer_mit-b5_Final-Set4-Grayscale_On-the-fly-Augmented_batch8_lr0.0002

This model is a fine-tuned version of nvidia/mit-b5 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.6332
  • Mean Iou: 0.2042
  • Mean Accuracy: 0.3547
  • Overall Accuracy: 0.5005
  • Accuracy Background: 0.8894
  • Accuracy Melt: 0.0
  • Accuracy Substrate: 0.1746
  • Iou Background: 0.4549
  • Iou Melt: 0.0
  • Iou Substrate: 0.1576

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 25
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Accuracy Background Accuracy Melt Accuracy Substrate Iou Background Iou Melt Iou Substrate
0.0948 1.7699 50 3.2172 0.1562 0.3333 0.4687 1.0 0.0 0.0 0.4687 0.0 0.0
0.0735 3.5398 100 3.5520 0.1562 0.3333 0.4687 1.0 0.0 0.0 0.4687 0.0 0.0
0.064 5.3097 150 3.4135 0.1562 0.3333 0.4687 1.0 0.0 0.0 0.4687 0.0 0.0
0.062 7.0796 200 3.2473 0.1594 0.3297 0.4638 0.9688 0.0 0.0203 0.4585 0.0 0.0197
0.0672 8.8496 250 1.3897 0.1861 0.3555 0.5006 0.9884 0.0 0.0780 0.4812 0.0 0.0771
0.0423 10.6195 300 1.3204 0.1603 0.2938 0.4144 0.7495 0.0 0.1318 0.3750 0.0 0.1058
0.044 12.3894 350 1.2021 0.2482 0.3864 0.5467 0.8290 0.0 0.3303 0.4616 0.0 0.2829
0.0322 14.1593 400 1.5121 0.2118 0.3578 0.5052 0.8625 0.0 0.2108 0.4497 0.0 0.1858
0.0291 15.9292 450 1.6387 0.1855 0.3411 0.4808 0.9079 0.0 0.1155 0.4504 0.0 0.1059
0.0235 17.6991 500 1.6660 0.1874 0.3481 0.4906 0.9404 0.0 0.1040 0.4639 0.0 0.0982
0.0243 19.4690 550 1.5501 0.2051 0.3521 0.4970 0.8649 0.0 0.1913 0.4463 0.0 0.1690
0.0225 21.2389 600 1.7049 0.1982 0.3497 0.4934 0.8914 0.0 0.1578 0.4520 0.0 0.1427
0.0265 23.0088 650 1.6788 0.2008 0.3531 0.4982 0.8989 0.0 0.1606 0.4564 0.0 0.1461
0.0214 24.7788 700 1.6332 0.2042 0.3547 0.5005 0.8894 0.0 0.1746 0.4549 0.0 0.1576

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.0.1+cu117
  • Datasets 2.19.2
  • Tokenizers 0.19.1