xls-r-1b-ur / README.md
anton-l's picture
anton-l HF staff
Upload README.md
7074240
metadata
language:
  - ur
license: apache-2.0
tags:
  - automatic-speech-recognition
  - mozilla-foundation/common_voice_8_0
  - generated_from_trainer
  - ur
  - robust-speech-event
  - hf-asr-leaderboard
datasets:
  - mozilla-foundation/common_voice_8_0
model-index:
  - name: ''
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 8.0
          type: mozilla-foundation/common_voice_8_0
          args: ur
        metrics:
          - name: Test WER
            type: wer
            value: 44.13

This model is a fine-tuned version of facebook/wav2vec2-xls-r-1b on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - UR dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9613
  • Wer: 0.5376

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 7.5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 50
  • num_epochs: 50.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
5.3118 1.96 100 2.9093 0.9982
2.2071 3.92 200 1.1737 0.7779
1.6098 5.88 300 0.9984 0.7015
1.4333 7.84 400 0.9800 0.6705
1.2859 9.8 500 0.9582 0.6487
1.2073 11.76 600 0.8841 0.6077
1.1417 13.73 700 0.9118 0.6343
1.0988 15.69 800 0.9217 0.6196
1.0279 17.65 900 0.9165 0.5867
0.9765 19.61 1000 0.9306 0.5978
0.9161 21.57 1100 0.9305 0.5768
0.8395 23.53 1200 0.9828 0.5819
0.8306 25.49 1300 0.9397 0.5760
0.7819 27.45 1400 0.9544 0.5742
0.7509 29.41 1500 0.9278 0.5690
0.7218 31.37 1600 0.9003 0.5587
0.6725 33.33 1700 0.9659 0.5554
0.6287 35.29 1800 0.9522 0.5561
0.6077 37.25 1900 0.9154 0.5465
0.5873 39.22 2000 0.9331 0.5469
0.5621 41.18 2100 0.9335 0.5491
0.5168 43.14 2200 0.9632 0.5458
0.5114 45.1 2300 0.9349 0.5387
0.4986 47.06 2400 0.9364 0.5380
0.4761 49.02 2500 0.9584 0.5391

Framework versions

  • Transformers 4.17.0.dev0
  • Pytorch 1.10.2+cu102
  • Datasets 1.18.3
  • Tokenizers 0.11.0