|
--- |
|
library_name: transformers |
|
license: cc-by-nc-sa-4.0 |
|
base_model: microsoft/layoutlmv2-base-uncased |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: test-model |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# test-model |
|
|
|
This model is a fine-tuned version of [microsoft/layoutlmv2-base-uncased](https://huggingface.co/microsoft/layoutlmv2-base-uncased) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 5.7326 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- num_epochs: 20 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-------:|:----:|:---------------:| |
|
| 0.5222 | 0.2212 | 50 | 3.3167 | |
|
| 0.3741 | 0.4425 | 100 | 3.5175 | |
|
| 0.5087 | 0.6637 | 150 | 3.8062 | |
|
| 0.7125 | 0.8850 | 200 | 4.1227 | |
|
| 0.4148 | 1.1062 | 250 | 4.1049 | |
|
| 0.3261 | 1.3274 | 300 | 3.8527 | |
|
| 0.3721 | 1.5487 | 350 | 4.1329 | |
|
| 0.3444 | 1.7699 | 400 | 4.0143 | |
|
| 0.7134 | 1.9912 | 450 | 3.9609 | |
|
| 0.2702 | 2.2124 | 500 | 4.3720 | |
|
| 0.4396 | 2.4336 | 550 | 4.0561 | |
|
| 0.4176 | 2.6549 | 600 | 3.8587 | |
|
| 0.3063 | 2.8761 | 650 | 3.7568 | |
|
| 0.2262 | 3.0973 | 700 | 4.1540 | |
|
| 0.2206 | 3.3186 | 750 | 4.4668 | |
|
| 0.3822 | 3.5398 | 800 | 4.1496 | |
|
| 0.2665 | 3.7611 | 850 | 4.0747 | |
|
| 0.3072 | 3.9823 | 900 | 4.8918 | |
|
| 0.2284 | 4.2035 | 950 | 4.1878 | |
|
| 0.1628 | 4.4248 | 1000 | 4.7544 | |
|
| 0.1525 | 4.6460 | 1050 | 4.5190 | |
|
| 0.2555 | 4.8673 | 1100 | 4.3845 | |
|
| 0.3933 | 5.0885 | 1150 | 4.0418 | |
|
| 0.0484 | 5.3097 | 1200 | 4.6753 | |
|
| 0.3433 | 5.5310 | 1250 | 4.1875 | |
|
| 0.2453 | 5.7522 | 1300 | 4.1922 | |
|
| 0.0677 | 5.9735 | 1350 | 4.7340 | |
|
| 0.1835 | 6.1947 | 1400 | 4.6262 | |
|
| 0.2394 | 6.4159 | 1450 | 4.4393 | |
|
| 0.1599 | 6.6372 | 1500 | 5.3708 | |
|
| 0.2705 | 6.8584 | 1550 | 3.9829 | |
|
| 0.2067 | 7.0796 | 1600 | 4.3178 | |
|
| 0.2859 | 7.3009 | 1650 | 3.7816 | |
|
| 0.1232 | 7.5221 | 1700 | 4.1798 | |
|
| 0.1811 | 7.7434 | 1750 | 4.3196 | |
|
| 0.1274 | 7.9646 | 1800 | 4.6113 | |
|
| 0.1361 | 8.1858 | 1850 | 4.2228 | |
|
| 0.1533 | 8.4071 | 1900 | 3.8230 | |
|
| 0.1179 | 8.6283 | 1950 | 4.0259 | |
|
| 0.1265 | 8.8496 | 2000 | 4.8971 | |
|
| 0.2258 | 9.0708 | 2050 | 4.7136 | |
|
| 0.0998 | 9.2920 | 2100 | 4.8828 | |
|
| 0.1154 | 9.5133 | 2150 | 4.2313 | |
|
| 0.1426 | 9.7345 | 2200 | 3.8275 | |
|
| 0.0924 | 9.9558 | 2250 | 4.2277 | |
|
| 0.0889 | 10.1770 | 2300 | 4.0426 | |
|
| 0.0495 | 10.3982 | 2350 | 4.2849 | |
|
| 0.0538 | 10.6195 | 2400 | 4.6157 | |
|
| 0.0318 | 10.8407 | 2450 | 5.0160 | |
|
| 0.0957 | 11.0619 | 2500 | 5.1147 | |
|
| 0.0417 | 11.2832 | 2550 | 4.8833 | |
|
| 0.0244 | 11.5044 | 2600 | 5.1067 | |
|
| 0.0799 | 11.7257 | 2650 | 4.8877 | |
|
| 0.0365 | 11.9469 | 2700 | 5.0193 | |
|
| 0.0901 | 12.1681 | 2750 | 4.7789 | |
|
| 0.0088 | 12.3894 | 2800 | 4.7324 | |
|
| 0.0498 | 12.6106 | 2850 | 4.6903 | |
|
| 0.0809 | 12.8319 | 2900 | 4.4701 | |
|
| 0.035 | 13.0531 | 2950 | 4.6233 | |
|
| 0.0486 | 13.2743 | 3000 | 4.8579 | |
|
| 0.0231 | 13.4956 | 3050 | 4.9399 | |
|
| 0.0677 | 13.7168 | 3100 | 4.8829 | |
|
| 0.028 | 13.9381 | 3150 | 5.1337 | |
|
| 0.0243 | 14.1593 | 3200 | 5.3634 | |
|
| 0.0248 | 14.3805 | 3250 | 5.4940 | |
|
| 0.0422 | 14.6018 | 3300 | 5.6946 | |
|
| 0.0654 | 14.8230 | 3350 | 5.3121 | |
|
| 0.0134 | 15.0442 | 3400 | 5.3630 | |
|
| 0.0405 | 15.2655 | 3450 | 5.3444 | |
|
| 0.0213 | 15.4867 | 3500 | 5.3298 | |
|
| 0.0125 | 15.7080 | 3550 | 5.3672 | |
|
| 0.0623 | 15.9292 | 3600 | 5.3024 | |
|
| 0.0032 | 16.1504 | 3650 | 5.2147 | |
|
| 0.0149 | 16.3717 | 3700 | 5.3809 | |
|
| 0.0248 | 16.5929 | 3750 | 5.4913 | |
|
| 0.03 | 16.8142 | 3800 | 5.3860 | |
|
| 0.0007 | 17.0354 | 3850 | 5.3717 | |
|
| 0.0032 | 17.2566 | 3900 | 5.5140 | |
|
| 0.0029 | 17.4779 | 3950 | 5.4480 | |
|
| 0.0055 | 17.6991 | 4000 | 5.4522 | |
|
| 0.0349 | 17.9204 | 4050 | 5.5724 | |
|
| 0.0007 | 18.1416 | 4100 | 5.6047 | |
|
| 0.0006 | 18.3628 | 4150 | 5.6135 | |
|
| 0.0007 | 18.5841 | 4200 | 5.6239 | |
|
| 0.0077 | 18.8053 | 4250 | 5.6692 | |
|
| 0.009 | 19.0265 | 4300 | 5.6640 | |
|
| 0.009 | 19.2478 | 4350 | 5.6822 | |
|
| 0.0007 | 19.4690 | 4400 | 5.7342 | |
|
| 0.0073 | 19.6903 | 4450 | 5.7320 | |
|
| 0.015 | 19.9115 | 4500 | 5.7326 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.46.2 |
|
- Pytorch 2.5.1+cu121 |
|
- Datasets 3.1.0 |
|
- Tokenizers 0.20.3 |
|
|