metadata
language:
- zh
license: apache-2.0
tags:
- whisper-event
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
model-index:
- name: Whisper Small Chinese
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: mozilla-foundation/common_voice_11_0 zh-TW
type: mozilla-foundation/common_voice_11_0
config: zh-TW
split: test
args: zh-TW
metrics:
- name: Wer
type: wer
value: 40.73694984646878
Whisper Small Chinese
This model is a fine-tuned version of openai/whisper-small on the mozilla-foundation/common_voice_11_0 zh-TW dataset. It achieves the following results on the evaluation set:
- Loss: 0.2141
- Wer: 40.7369
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.2575 | 0.2 | 1000 | 0.2207 | 44.9744 |
0.0529 | 1.16 | 2000 | 0.2099 | 41.3101 |
0.0212 | 2.13 | 3000 | 0.2183 | 41.5558 |
0.0041 | 3.09 | 4000 | 0.2151 | 41.4944 |
0.003 | 4.06 | 5000 | 0.2141 | 40.7369 |
Framework versions
- Transformers 4.28.0.dev0
- Pytorch 1.13.1+cu117
- Datasets 2.10.2.dev0
- Tokenizers 0.13.2