Update README.md
Browse files
README.md
CHANGED
@@ -1,111 +1,118 @@
|
|
1 |
-
---
|
2 |
-
license: mit
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
]
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
"
|
88 |
-
"
|
89 |
-
"
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
```
|
110 |
-
|
111 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
base_model:
|
6 |
+
- meta-llama/Meta-Llama-3-8B
|
7 |
+
pipeline_tag: text-generation
|
8 |
+
tags:
|
9 |
+
- transformers
|
10 |
+
---
|
11 |
+
|
12 |
+
## SPEED-synthesis-7b-senior
|
13 |
+
|
14 |
+
[Little Giants: Synthesizing High-Quality Embedding Data at Scale](https://arxiv.org/pdf/2410.18634.pdf). Haonan Chen, Liang Wang, Nan Yang, Yutao Zhu, Ziliang Zhao, Furu Wei, Zhicheng Dou, arXiv 2024
|
15 |
+
|
16 |
+
This is the senior data synthesis model of SPEED.
|
17 |
+
|
18 |
+
## Usage
|
19 |
+
|
20 |
+
Below is an example to synthesize classification data using this senior generator.
|
21 |
+
|
22 |
+
The prompts and misc scripts can be found in our [github page](https://github.com/haon-chen/SPEED)
|
23 |
+
|
24 |
+
### Transformers
|
25 |
+
|
26 |
+
```python
|
27 |
+
import torch
|
28 |
+
import os
|
29 |
+
import random
|
30 |
+
import numpy as np
|
31 |
+
import json
|
32 |
+
import re
|
33 |
+
|
34 |
+
from torch import Tensor
|
35 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
36 |
+
|
37 |
+
from prompts_synthesis import get_create_classify_data_prompt
|
38 |
+
from utils import fix_common_json_errors_and_loads
|
39 |
+
|
40 |
+
|
41 |
+
LLAMA3_PROMPT = """
|
42 |
+
{prompt} [/INST]
|
43 |
+
""".strip("\n")
|
44 |
+
|
45 |
+
# Each query must come with a one-sentence instruction that describes the task
|
46 |
+
tasks = [
|
47 |
+
'Identify the intended age group for educational technology products.',
|
48 |
+
'Classify businesses based on their operational hours.'
|
49 |
+
]
|
50 |
+
language = 'English'
|
51 |
+
|
52 |
+
prompts = [LLAMA3_PROMPT.format(prompt=get_create_classify_data_prompt(task=task, language=language)[1]['content']) for task in tasks]
|
53 |
+
|
54 |
+
tokenizer = AutoTokenizer.from_pretrained('Haon-Chen/speed-synthesis-7b-senior')
|
55 |
+
model = AutoModelForCausalLM.from_pretrained('Haon-Chen/speed-synthesis-7b-senior')
|
56 |
+
model.to("cuda:0")
|
57 |
+
model.eval()
|
58 |
+
tokenizer.pad_token = tokenizer.pad_token or tokenizer.eos_token
|
59 |
+
tokenizer.padding_side = "left"
|
60 |
+
tokenizer.truncation_side = "left"
|
61 |
+
|
62 |
+
with torch.inference_mode():
|
63 |
+
# Tokenize the input texts
|
64 |
+
encodes = tokenizer(prompts, padding="longest", add_special_tokens=True, return_tensors="pt")
|
65 |
+
input_ids = encodes.input_ids.to(model.device)
|
66 |
+
attention_mask = encodes.attention_mask.to(model.device)
|
67 |
+
|
68 |
+
# Set the generation parameters
|
69 |
+
GEN_CONFIG = {"do_sample":True, "temperature": 1.0, "top_p": 1.0, "max_new_tokens": 800}
|
70 |
+
output = model.generate(
|
71 |
+
input_ids=input_ids,
|
72 |
+
attention_mask=attention_mask,
|
73 |
+
pad_token_id = tokenizer.eos_token_id,
|
74 |
+
**GEN_CONFIG
|
75 |
+
)
|
76 |
+
output_texts = tokenizer.batch_decode(output, skip_special_tokens=True, clean_up_tokenization_spaces=False)
|
77 |
+
batch_results = []
|
78 |
+
for i in range(len(output_texts)):
|
79 |
+
batch_results.append(output_texts[i][len(prompts[i]):].strip(' '))
|
80 |
+
|
81 |
+
# Format outputs
|
82 |
+
bad_cnt=0
|
83 |
+
outputs = []
|
84 |
+
for i, result in enumerate(batch_results):
|
85 |
+
try:
|
86 |
+
output = fix_common_json_errors_and_loads(result)
|
87 |
+
user_query = output.get("input_text", "")
|
88 |
+
positive_document = output.get("label", "")
|
89 |
+
hard_negative_document = output.get("misleading_label", "")
|
90 |
+
except:
|
91 |
+
bad_cnt+=1
|
92 |
+
continue
|
93 |
+
out_data = {
|
94 |
+
"query": user_query,
|
95 |
+
"positives": [positive_document],
|
96 |
+
"negatives": [hard_negative_document],
|
97 |
+
"language": "English",
|
98 |
+
"task_definition": tasks[i],
|
99 |
+
}
|
100 |
+
outputs.append(out_data)
|
101 |
+
print(bad_cnt)
|
102 |
+
print(outputs)
|
103 |
+
```
|
104 |
+
|
105 |
+
## Citation
|
106 |
+
|
107 |
+
If you find our paper or models helpful, please consider cite as follows:
|
108 |
+
|
109 |
+
```bibtex
|
110 |
+
@article{chen2024little,
|
111 |
+
title={Little Giants: Synthesizing High-Quality Embedding Data at Scale},
|
112 |
+
author={Chen, Haonan and Wang, Liang and Yang, Nan and Zhu, Yutao and Zhao, Ziliang and Wei, Furu and Dou, Zhicheng},
|
113 |
+
journal={arXiv preprint arXiv:2410.18634},
|
114 |
+
year={2024}
|
115 |
+
}
|
116 |
+
```
|
117 |
+
|
118 |
+
## Limitations
|