|
--- |
|
language: |
|
- en |
|
license: apache-2.0 |
|
base_model: openai/whisper-base |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: openai/whisper-base |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# openai/whisper-base |
|
|
|
This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the pphuc25/EngMed dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.3225 |
|
- Wer: 27.9808 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 100 |
|
- num_epochs: 20 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:-----:|:-----:|:---------------:|:-------:| |
|
| 0.7862 | 1.0 | 3491 | 0.8811 | 43.2441 | |
|
| 0.5443 | 2.0 | 6982 | 0.8834 | 38.7694 | |
|
| 0.3319 | 3.0 | 10473 | 0.9247 | 34.6764 | |
|
| 0.2412 | 4.0 | 13964 | 0.9765 | 34.9636 | |
|
| 0.1809 | 5.0 | 17455 | 1.0223 | 31.3646 | |
|
| 0.1112 | 6.0 | 20946 | 1.1013 | 33.5169 | |
|
| 0.0786 | 7.0 | 24437 | 1.1217 | 34.1563 | |
|
| 0.0666 | 8.0 | 27928 | 1.1698 | 36.5356 | |
|
| 0.0487 | 9.0 | 31419 | 1.1934 | 33.9412 | |
|
| 0.0395 | 10.0 | 34910 | 1.2259 | 31.4509 | |
|
| 0.0229 | 11.0 | 38401 | 1.2614 | 32.0655 | |
|
| 0.0181 | 12.0 | 41892 | 1.2823 | 30.5444 | |
|
| 0.0118 | 13.0 | 45383 | 1.2890 | 30.2773 | |
|
| 0.0069 | 14.0 | 48874 | 1.3081 | 30.3435 | |
|
| 0.0073 | 15.0 | 52365 | 1.3085 | 30.4097 | |
|
| 0.0017 | 16.0 | 55856 | 1.3099 | 29.4145 | |
|
| 0.0062 | 17.0 | 59347 | 1.3229 | 29.5386 | |
|
| 0.0013 | 18.0 | 62838 | 1.3162 | 28.3058 | |
|
| 0.0001 | 19.0 | 66329 | 1.3197 | 28.0387 | |
|
| 0.0001 | 20.0 | 69820 | 1.3225 | 27.9808 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.41.1 |
|
- Pytorch 2.3.0 |
|
- Datasets 2.19.1 |
|
- Tokenizers 0.19.1 |
|
|