Upload 10 files
Browse files- README.md +152 -0
- config.json +169 -0
- gitattributes.txt +34 -0
- preprocessor_config.json +17 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +7 -0
- tf_model.h5 +3 -0
- tokenizer.json +0 -0
- tokenizer_config.json +21 -0
- vocab.txt +0 -0
README.md
ADDED
|
@@ -0,0 +1,152 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
pipeline_tag: image-to-text
|
| 3 |
+
tags:
|
| 4 |
+
- image-captioning
|
| 5 |
+
languages:
|
| 6 |
+
- en
|
| 7 |
+
license: bsd-3-clause
|
| 8 |
+
---
|
| 9 |
+
|
| 10 |
+
# BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation
|
| 11 |
+
|
| 12 |
+
Model card for image captioning pretrained on COCO dataset - base architecture (with ViT base backbone).
|
| 13 |
+
|
| 14 |
+
|  |
|
| 15 |
+
|:--:|
|
| 16 |
+
| <b> Pull figure from BLIP official repo | Image source: https://github.com/salesforce/BLIP </b>|
|
| 17 |
+
|
| 18 |
+
## TL;DR
|
| 19 |
+
|
| 20 |
+
Authors from the [paper](https://arxiv.org/abs/2201.12086) write in the abstract:
|
| 21 |
+
|
| 22 |
+
*Vision-Language Pre-training (VLP) has advanced the performance for many vision-language tasks. However, most existing pre-trained models only excel in either understanding-based tasks or generation-based tasks. Furthermore, performance improvement has been largely achieved by scaling up the dataset with noisy image-text pairs collected from the web, which is a suboptimal source of supervision. In this paper, we propose BLIP, a new VLP framework which transfers flexibly to both vision-language understanding and generation tasks. BLIP effectively utilizes the noisy web data by bootstrapping the captions, where a captioner generates synthetic captions and a filter removes the noisy ones. We achieve state-of-the-art results on a wide range of vision-language tasks, such as image-text retrieval (+2.7% in average recall@1), image captioning (+2.8% in CIDEr), and VQA (+1.6% in VQA score). BLIP also demonstrates strong generalization ability when directly transferred to videolanguage tasks in a zero-shot manner. Code, models, and datasets are released.*
|
| 23 |
+
|
| 24 |
+
## Usage
|
| 25 |
+
|
| 26 |
+
You can use this model for conditional and un-conditional image captioning
|
| 27 |
+
|
| 28 |
+
### Using the Pytorch model
|
| 29 |
+
|
| 30 |
+
#### Running the model on CPU
|
| 31 |
+
|
| 32 |
+
<details>
|
| 33 |
+
<summary> Click to expand </summary>
|
| 34 |
+
|
| 35 |
+
```python
|
| 36 |
+
import requests
|
| 37 |
+
from PIL import Image
|
| 38 |
+
from transformers import BlipProcessor, BlipForConditionalGeneration
|
| 39 |
+
|
| 40 |
+
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
|
| 41 |
+
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
|
| 42 |
+
|
| 43 |
+
img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg'
|
| 44 |
+
raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')
|
| 45 |
+
|
| 46 |
+
# conditional image captioning
|
| 47 |
+
text = "a photography of"
|
| 48 |
+
inputs = processor(raw_image, text, return_tensors="pt")
|
| 49 |
+
|
| 50 |
+
out = model.generate(**inputs)
|
| 51 |
+
print(processor.decode(out[0], skip_special_tokens=True))
|
| 52 |
+
# >>> a photography of a woman and her dog
|
| 53 |
+
|
| 54 |
+
# unconditional image captioning
|
| 55 |
+
inputs = processor(raw_image, return_tensors="pt")
|
| 56 |
+
|
| 57 |
+
out = model.generate(**inputs)
|
| 58 |
+
print(processor.decode(out[0], skip_special_tokens=True))
|
| 59 |
+
>>> a woman sitting on the beach with her dog
|
| 60 |
+
```
|
| 61 |
+
</details>
|
| 62 |
+
|
| 63 |
+
#### Running the model on GPU
|
| 64 |
+
|
| 65 |
+
##### In full precision
|
| 66 |
+
|
| 67 |
+
<details>
|
| 68 |
+
<summary> Click to expand </summary>
|
| 69 |
+
|
| 70 |
+
```python
|
| 71 |
+
import requests
|
| 72 |
+
from PIL import Image
|
| 73 |
+
from transformers import BlipProcessor, BlipForConditionalGeneration
|
| 74 |
+
|
| 75 |
+
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
|
| 76 |
+
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base").to("cuda")
|
| 77 |
+
|
| 78 |
+
img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg'
|
| 79 |
+
raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')
|
| 80 |
+
|
| 81 |
+
# conditional image captioning
|
| 82 |
+
text = "a photography of"
|
| 83 |
+
inputs = processor(raw_image, text, return_tensors="pt").to("cuda")
|
| 84 |
+
|
| 85 |
+
out = model.generate(**inputs)
|
| 86 |
+
print(processor.decode(out[0], skip_special_tokens=True))
|
| 87 |
+
# >>> a photography of a woman and her dog
|
| 88 |
+
|
| 89 |
+
# unconditional image captioning
|
| 90 |
+
inputs = processor(raw_image, return_tensors="pt").to("cuda")
|
| 91 |
+
|
| 92 |
+
out = model.generate(**inputs)
|
| 93 |
+
print(processor.decode(out[0], skip_special_tokens=True))
|
| 94 |
+
>>> a woman sitting on the beach with her dog
|
| 95 |
+
```
|
| 96 |
+
</details>
|
| 97 |
+
|
| 98 |
+
##### In half precision (`float16`)
|
| 99 |
+
|
| 100 |
+
<details>
|
| 101 |
+
<summary> Click to expand </summary>
|
| 102 |
+
|
| 103 |
+
```python
|
| 104 |
+
import torch
|
| 105 |
+
import requests
|
| 106 |
+
from PIL import Image
|
| 107 |
+
from transformers import BlipProcessor, BlipForConditionalGeneration
|
| 108 |
+
|
| 109 |
+
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
|
| 110 |
+
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base", torch_dtype=torch.float16).to("cuda")
|
| 111 |
+
|
| 112 |
+
img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg'
|
| 113 |
+
raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')
|
| 114 |
+
|
| 115 |
+
# conditional image captioning
|
| 116 |
+
text = "a photography of"
|
| 117 |
+
inputs = processor(raw_image, text, return_tensors="pt").to("cuda", torch.float16)
|
| 118 |
+
|
| 119 |
+
out = model.generate(**inputs)
|
| 120 |
+
print(processor.decode(out[0], skip_special_tokens=True))
|
| 121 |
+
# >>> a photography of a woman and her dog
|
| 122 |
+
|
| 123 |
+
# unconditional image captioning
|
| 124 |
+
inputs = processor(raw_image, return_tensors="pt").to("cuda", torch.float16)
|
| 125 |
+
|
| 126 |
+
out = model.generate(**inputs)
|
| 127 |
+
print(processor.decode(out[0], skip_special_tokens=True))
|
| 128 |
+
>>> a woman sitting on the beach with her dog
|
| 129 |
+
```
|
| 130 |
+
</details>
|
| 131 |
+
|
| 132 |
+
## BibTex and citation info
|
| 133 |
+
|
| 134 |
+
```
|
| 135 |
+
@misc{https://doi.org/10.48550/arxiv.2201.12086,
|
| 136 |
+
doi = {10.48550/ARXIV.2201.12086},
|
| 137 |
+
|
| 138 |
+
url = {https://arxiv.org/abs/2201.12086},
|
| 139 |
+
|
| 140 |
+
author = {Li, Junnan and Li, Dongxu and Xiong, Caiming and Hoi, Steven},
|
| 141 |
+
|
| 142 |
+
keywords = {Computer Vision and Pattern Recognition (cs.CV), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
| 143 |
+
|
| 144 |
+
title = {BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation},
|
| 145 |
+
|
| 146 |
+
publisher = {arXiv},
|
| 147 |
+
|
| 148 |
+
year = {2022},
|
| 149 |
+
|
| 150 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
| 151 |
+
}
|
| 152 |
+
```
|
config.json
ADDED
|
@@ -0,0 +1,169 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_commit_hash": null,
|
| 3 |
+
"architectures": [
|
| 4 |
+
"BlipForConditionalGeneration"
|
| 5 |
+
],
|
| 6 |
+
"image_text_hidden_size": 256,
|
| 7 |
+
"initializer_factor": 1.0,
|
| 8 |
+
"logit_scale_init_value": 2.6592,
|
| 9 |
+
"model_type": "blip",
|
| 10 |
+
"projection_dim": 512,
|
| 11 |
+
"text_config": {
|
| 12 |
+
"_name_or_path": "",
|
| 13 |
+
"add_cross_attention": false,
|
| 14 |
+
"architectures": null,
|
| 15 |
+
"attention_probs_dropout_prob": 0.0,
|
| 16 |
+
"bad_words_ids": null,
|
| 17 |
+
"begin_suppress_tokens": null,
|
| 18 |
+
"bos_token_id": 30522,
|
| 19 |
+
"chunk_size_feed_forward": 0,
|
| 20 |
+
"cross_attention_hidden_size": null,
|
| 21 |
+
"decoder_start_token_id": null,
|
| 22 |
+
"diversity_penalty": 0.0,
|
| 23 |
+
"do_sample": false,
|
| 24 |
+
"early_stopping": false,
|
| 25 |
+
"encoder_no_repeat_ngram_size": 0,
|
| 26 |
+
"eos_token_id": 2,
|
| 27 |
+
"exponential_decay_length_penalty": null,
|
| 28 |
+
"finetuning_task": null,
|
| 29 |
+
"forced_bos_token_id": null,
|
| 30 |
+
"forced_eos_token_id": null,
|
| 31 |
+
"hidden_act": "gelu",
|
| 32 |
+
"hidden_dropout_prob": 0.0,
|
| 33 |
+
"hidden_size": 768,
|
| 34 |
+
"id2label": {
|
| 35 |
+
"0": "LABEL_0",
|
| 36 |
+
"1": "LABEL_1"
|
| 37 |
+
},
|
| 38 |
+
"initializer_factor": 1.0,
|
| 39 |
+
"initializer_range": 0.02,
|
| 40 |
+
"intermediate_size": 3072,
|
| 41 |
+
"is_decoder": true,
|
| 42 |
+
"is_encoder_decoder": false,
|
| 43 |
+
"label2id": {
|
| 44 |
+
"LABEL_0": 0,
|
| 45 |
+
"LABEL_1": 1
|
| 46 |
+
},
|
| 47 |
+
"layer_norm_eps": 1e-12,
|
| 48 |
+
"length_penalty": 1.0,
|
| 49 |
+
"max_length": 20,
|
| 50 |
+
"max_position_embeddings": 512,
|
| 51 |
+
"min_length": 0,
|
| 52 |
+
"model_type": "blip_text_model",
|
| 53 |
+
"no_repeat_ngram_size": 0,
|
| 54 |
+
"num_attention_heads": 12,
|
| 55 |
+
"num_beam_groups": 1,
|
| 56 |
+
"num_beams": 1,
|
| 57 |
+
"num_hidden_layers": 12,
|
| 58 |
+
"num_return_sequences": 1,
|
| 59 |
+
"output_attentions": false,
|
| 60 |
+
"output_hidden_states": false,
|
| 61 |
+
"output_scores": false,
|
| 62 |
+
"pad_token_id": 0,
|
| 63 |
+
"prefix": null,
|
| 64 |
+
"problem_type": null,
|
| 65 |
+
"projection_dim": 768,
|
| 66 |
+
"pruned_heads": {},
|
| 67 |
+
"remove_invalid_values": false,
|
| 68 |
+
"repetition_penalty": 1.0,
|
| 69 |
+
"return_dict": true,
|
| 70 |
+
"return_dict_in_generate": false,
|
| 71 |
+
"sep_token_id": 102,
|
| 72 |
+
"suppress_tokens": null,
|
| 73 |
+
"task_specific_params": null,
|
| 74 |
+
"temperature": 1.0,
|
| 75 |
+
"tf_legacy_loss": false,
|
| 76 |
+
"tie_encoder_decoder": false,
|
| 77 |
+
"tie_word_embeddings": true,
|
| 78 |
+
"tokenizer_class": null,
|
| 79 |
+
"top_k": 50,
|
| 80 |
+
"top_p": 1.0,
|
| 81 |
+
"torch_dtype": null,
|
| 82 |
+
"torchscript": false,
|
| 83 |
+
"transformers_version": "4.26.0.dev0",
|
| 84 |
+
"typical_p": 1.0,
|
| 85 |
+
"use_bfloat16": false,
|
| 86 |
+
"use_cache": true,
|
| 87 |
+
"vocab_size": 30524
|
| 88 |
+
},
|
| 89 |
+
"torch_dtype": "float32",
|
| 90 |
+
"transformers_version": null,
|
| 91 |
+
"vision_config": {
|
| 92 |
+
"_name_or_path": "",
|
| 93 |
+
"add_cross_attention": false,
|
| 94 |
+
"architectures": null,
|
| 95 |
+
"attention_dropout": 0.0,
|
| 96 |
+
"bad_words_ids": null,
|
| 97 |
+
"begin_suppress_tokens": null,
|
| 98 |
+
"bos_token_id": null,
|
| 99 |
+
"chunk_size_feed_forward": 0,
|
| 100 |
+
"cross_attention_hidden_size": null,
|
| 101 |
+
"decoder_start_token_id": null,
|
| 102 |
+
"diversity_penalty": 0.0,
|
| 103 |
+
"do_sample": false,
|
| 104 |
+
"dropout": 0.0,
|
| 105 |
+
"early_stopping": false,
|
| 106 |
+
"encoder_no_repeat_ngram_size": 0,
|
| 107 |
+
"eos_token_id": null,
|
| 108 |
+
"exponential_decay_length_penalty": null,
|
| 109 |
+
"finetuning_task": null,
|
| 110 |
+
"forced_bos_token_id": null,
|
| 111 |
+
"forced_eos_token_id": null,
|
| 112 |
+
"hidden_act": "gelu",
|
| 113 |
+
"hidden_size": 768,
|
| 114 |
+
"id2label": {
|
| 115 |
+
"0": "LABEL_0",
|
| 116 |
+
"1": "LABEL_1"
|
| 117 |
+
},
|
| 118 |
+
"image_size": 384,
|
| 119 |
+
"initializer_factor": 1.0,
|
| 120 |
+
"initializer_range": 0.02,
|
| 121 |
+
"intermediate_size": 3072,
|
| 122 |
+
"is_decoder": false,
|
| 123 |
+
"is_encoder_decoder": false,
|
| 124 |
+
"label2id": {
|
| 125 |
+
"LABEL_0": 0,
|
| 126 |
+
"LABEL_1": 1
|
| 127 |
+
},
|
| 128 |
+
"layer_norm_eps": 1e-05,
|
| 129 |
+
"length_penalty": 1.0,
|
| 130 |
+
"max_length": 20,
|
| 131 |
+
"min_length": 0,
|
| 132 |
+
"model_type": "blip_vision_model",
|
| 133 |
+
"no_repeat_ngram_size": 0,
|
| 134 |
+
"num_attention_heads": 12,
|
| 135 |
+
"num_beam_groups": 1,
|
| 136 |
+
"num_beams": 1,
|
| 137 |
+
"num_channels": 3,
|
| 138 |
+
"num_hidden_layers": 12,
|
| 139 |
+
"num_return_sequences": 1,
|
| 140 |
+
"output_attentions": false,
|
| 141 |
+
"output_hidden_states": false,
|
| 142 |
+
"output_scores": false,
|
| 143 |
+
"pad_token_id": null,
|
| 144 |
+
"patch_size": 16,
|
| 145 |
+
"prefix": null,
|
| 146 |
+
"problem_type": null,
|
| 147 |
+
"projection_dim": 512,
|
| 148 |
+
"pruned_heads": {},
|
| 149 |
+
"remove_invalid_values": false,
|
| 150 |
+
"repetition_penalty": 1.0,
|
| 151 |
+
"return_dict": true,
|
| 152 |
+
"return_dict_in_generate": false,
|
| 153 |
+
"sep_token_id": null,
|
| 154 |
+
"suppress_tokens": null,
|
| 155 |
+
"task_specific_params": null,
|
| 156 |
+
"temperature": 1.0,
|
| 157 |
+
"tf_legacy_loss": false,
|
| 158 |
+
"tie_encoder_decoder": false,
|
| 159 |
+
"tie_word_embeddings": true,
|
| 160 |
+
"tokenizer_class": null,
|
| 161 |
+
"top_k": 50,
|
| 162 |
+
"top_p": 1.0,
|
| 163 |
+
"torch_dtype": null,
|
| 164 |
+
"torchscript": false,
|
| 165 |
+
"transformers_version": "4.26.0.dev0",
|
| 166 |
+
"typical_p": 1.0,
|
| 167 |
+
"use_bfloat16": false
|
| 168 |
+
}
|
| 169 |
+
}
|
gitattributes.txt
ADDED
|
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
| 2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
| 3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
| 4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
| 5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
| 6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
| 7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
| 8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
| 9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
| 10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
| 11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
| 12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
| 13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
| 14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
| 15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
| 16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
| 17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
| 18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
| 19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
| 20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
| 21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
| 22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
| 23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
| 24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
| 25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
| 27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
| 28 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
| 29 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
| 30 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
| 31 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
| 32 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 33 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 34 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
preprocessor_config.json
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"do_normalize": true,
|
| 3 |
+
"do_resize": true,
|
| 4 |
+
"image_mean": [
|
| 5 |
+
0.48145466,
|
| 6 |
+
0.4578275,
|
| 7 |
+
0.40821073
|
| 8 |
+
],
|
| 9 |
+
"image_processor_type": "BlipImageProcessor",
|
| 10 |
+
"image_std": [
|
| 11 |
+
0.26862954,
|
| 12 |
+
0.26130258,
|
| 13 |
+
0.27577711
|
| 14 |
+
],
|
| 15 |
+
"processor_class": "BlipProcessor",
|
| 16 |
+
"size": 384
|
| 17 |
+
}
|
pytorch_model.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a014e2a72e3435fd3f5836965d85fecbc79e1df1c325fc84dd942f89b303b796
|
| 3 |
+
size 989821731
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cls_token": "[CLS]",
|
| 3 |
+
"mask_token": "[MASK]",
|
| 4 |
+
"pad_token": "[PAD]",
|
| 5 |
+
"sep_token": "[SEP]",
|
| 6 |
+
"unk_token": "[UNK]"
|
| 7 |
+
}
|
tf_model.h5
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d0aaa4c0e003f599d8baa53a9dee85af14eef20554cf2f8113a2673e25a59f8c
|
| 3 |
+
size 990275136
|
tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cls_token": "[CLS]",
|
| 3 |
+
"do_basic_tokenize": true,
|
| 4 |
+
"do_lower_case": true,
|
| 5 |
+
"mask_token": "[MASK]",
|
| 6 |
+
"model_max_length": 512,
|
| 7 |
+
"name_or_path": "bert-base-uncased",
|
| 8 |
+
"never_split": null,
|
| 9 |
+
"pad_token": "[PAD]",
|
| 10 |
+
"processor_class": "BlipProcessor",
|
| 11 |
+
"sep_token": "[SEP]",
|
| 12 |
+
"special_tokens_map_file": null,
|
| 13 |
+
"strip_accents": null,
|
| 14 |
+
"tokenize_chinese_chars": true,
|
| 15 |
+
"tokenizer_class": "BertTokenizer",
|
| 16 |
+
"unk_token": "[UNK]",
|
| 17 |
+
"model_input_names": [
|
| 18 |
+
"input_ids",
|
| 19 |
+
"attention_mask"
|
| 20 |
+
]
|
| 21 |
+
}
|
vocab.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|