Hajime Yagihara commited on
Commit
c76f641
1 Parent(s): 2c9b82f

add gradient_checkpointing

Browse files
Files changed (1) hide show
  1. modeling_mpt.py +27 -1
modeling_mpt.py CHANGED
@@ -30,11 +30,18 @@ class MPTPreTrainedModel(PreTrainedModel):
30
  base_model_prefix = 'model'
31
  _no_split_modules = ['MPTBlock']
32
 
 
 
 
 
 
 
33
  class MPTModel(MPTPreTrainedModel):
34
 
35
  def __init__(self, config: MPTConfig):
36
  config._validate_config()
37
  super().__init__(config)
 
38
  self.attn_impl = config.attn_config['attn_impl']
39
  self.prefix_lm = config.attn_config['prefix_lm']
40
  self.attn_uses_sequence_id = config.attn_config['attn_uses_sequence_id']
@@ -144,6 +151,9 @@ class MPTModel(MPTPreTrainedModel):
144
  def forward(self, input_ids: torch.LongTensor, past_key_values: Optional[List[Tuple[torch.FloatTensor]]]=None, attention_mask: Optional[torch.ByteTensor]=None, prefix_mask: Optional[torch.ByteTensor]=None, sequence_id: Optional[torch.LongTensor]=None, return_dict: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, use_cache: Optional[bool]=None, inputs_embeds: Optional[torch.FloatTensor] = None):
145
  return_dict = return_dict if return_dict is not None else self.config.return_dict
146
  use_cache = use_cache if use_cache is not None else self.config.use_cache
 
 
 
147
  if input_ids is not None and inputs_embeds is not None:
148
  raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
149
  elif input_ids is not None:
@@ -218,7 +228,23 @@ class MPTModel(MPTPreTrainedModel):
218
  assert all_hidden_states is not None
219
  all_hidden_states = all_hidden_states + (x,)
220
  past_key_value = past_key_values[b_idx] if past_key_values is not None else None
221
- (x, attn_weights, past_key_value) = block(x, past_key_value=past_key_value, attn_bias=attn_bias, attention_mask=attention_mask, is_causal=self.is_causal)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
222
  if past_key_values is not None:
223
  past_key_values[b_idx] = past_key_value
224
  if output_attentions:
 
30
  base_model_prefix = 'model'
31
  _no_split_modules = ['MPTBlock']
32
 
33
+ supports_gradient_checkpointing = True
34
+
35
+ def _set_gradient_checkpointing(self, module, value=False):
36
+ if isinstance(module, MPTModel):
37
+ module.gradient_checkpointing = value
38
+
39
  class MPTModel(MPTPreTrainedModel):
40
 
41
  def __init__(self, config: MPTConfig):
42
  config._validate_config()
43
  super().__init__(config)
44
+ self.gradient_checkpointing = False
45
  self.attn_impl = config.attn_config['attn_impl']
46
  self.prefix_lm = config.attn_config['prefix_lm']
47
  self.attn_uses_sequence_id = config.attn_config['attn_uses_sequence_id']
 
151
  def forward(self, input_ids: torch.LongTensor, past_key_values: Optional[List[Tuple[torch.FloatTensor]]]=None, attention_mask: Optional[torch.ByteTensor]=None, prefix_mask: Optional[torch.ByteTensor]=None, sequence_id: Optional[torch.LongTensor]=None, return_dict: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, use_cache: Optional[bool]=None, inputs_embeds: Optional[torch.FloatTensor] = None):
152
  return_dict = return_dict if return_dict is not None else self.config.return_dict
153
  use_cache = use_cache if use_cache is not None else self.config.use_cache
154
+ if self.gradient_checkpointing and self.training:
155
+ if use_cache:
156
+ use_cache = False
157
  if input_ids is not None and inputs_embeds is not None:
158
  raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
159
  elif input_ids is not None:
 
228
  assert all_hidden_states is not None
229
  all_hidden_states = all_hidden_states + (x,)
230
  past_key_value = past_key_values[b_idx] if past_key_values is not None else None
231
+ if self.gradient_checkpointing and self.training:
232
+ def create_custom_forward(module):
233
+ def custom_forward(*inputs):
234
+ # None for past_key_value
235
+ return module(*inputs)
236
+ return custom_forward
237
+ (x, attn_weights, past_key_value) = torch.utils.checkpoint.checkpoint(
238
+ create_custom_forward(block),
239
+ x,
240
+ past_key_value,
241
+ attn_bias,
242
+ attention_mask,
243
+ self.is_causal,
244
+ )
245
+ else:
246
+ (x, attn_weights, past_key_value) = block(x, past_key_value=past_key_value, attn_bias=attn_bias, attention_mask=attention_mask, is_causal=self.is_causal)
247
+ # (x, attn_weights, past_key_value) = block(x, past_key_value=past_key_value, attn_bias=attn_bias, attention_mask=attention_mask, is_causal=self.is_causal)
248
  if past_key_values is not None:
249
  past_key_values[b_idx] = past_key_value
250
  if output_attentions: