HachiML's picture
End of training
2921cff verified
---
library_name: peft
tags:
- trl
- dpo
- generated_from_trainer
base_model: HachiML/Mistral-7B-v0.3-mxm0.5-lora
model-index:
- name: Mistral-7B-v0.3-dpo-lora_sr_mxm1_lr1e-5_3ep
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Mistral-7B-v0.3-dpo-lora_sr_mxm1_lr1e-5_3ep
This model is a fine-tuned version of [HachiML/Mistral-7B-v0.3-mxm0.5-lora](https://huggingface.co/HachiML/Mistral-7B-v0.3-mxm0.5-lora) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3042
- Rewards/chosen: -1.2203
- Rewards/rejected: -3.3451
- Rewards/accuracies: 0.8378
- Rewards/margins: 2.1247
- Logps/rejected: -261.0693
- Logps/chosen: -372.8520
- Logits/rejected: 1.1299
- Logits/chosen: 0.4372
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
|:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
| 0.4588 | 1.0 | 103 | 0.3524 | -0.7926 | -2.3725 | 0.7857 | 1.5799 | -251.3439 | -368.5752 | 0.8310 | 0.2112 |
| 0.1934 | 2.0 | 206 | 0.3055 | -1.1865 | -3.2760 | 0.8170 | 2.0896 | -260.3791 | -372.5136 | 1.0927 | 0.4082 |
| 0.1254 | 3.0 | 309 | 0.3042 | -1.2203 | -3.3451 | 0.8378 | 2.1247 | -261.0693 | -372.8520 | 1.1299 | 0.4372 |
### Framework versions
- PEFT 0.11.1
- Transformers 4.41.1
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1