MOMENT-1-large-embedding-v0.1 / modeling_moment.py
HachiML's picture
Upload modeling_moment.py
15d09b0 verified
# Auton LabによるMomentライブラリをTransformers向けに書き換えたものです。
# Embeddingに特化したアーキテクチャとなっています。
# refers: https://github.com/moment-timeseries-foundation-model/moment
from dataclasses import dataclass
from typing import List, Optional, Tuple, Union
import math
import numpy.typing as npt
import torch
from torch import nn
from transformers import PreTrainedModel
from transformers import T5Config, T5Model
from transformers.utils import logging
from .configuration_moment import MomentConfig
logger = logging.get_logger(__name__)
@dataclass
class TimeseriesOutputs:
# forecast: npt.NDArray = None
# anomaly_scores: npt.NDArray = None
logits: npt.NDArray = None
labels: int = None
input_mask: npt.NDArray = None
pretrain_mask: npt.NDArray = None
# reconstruction: npt.NDArray = None
embeddings: npt.NDArray = None
metadata: dict = None
illegal_output: bool = False
hidden_states: npt.NDArray = None # For Mists model
# refers: https://github.com/moment-timeseries-foundation-model/moment/blob/088b253a1138ac7e48a7efc9bf902336c9eec8d9/momentfm/utils/masking.py#L6C1-L6C2
class Masking:
def __init__(
self, mask_ratio: float = 0.3, patch_len: int = 8, stride: Optional[int] = None
):
"""
Indices with 0 mask are hidden, and with 1 are observed.
"""
self.mask_ratio = mask_ratio
self.patch_len = patch_len
self.stride = patch_len if stride is None else stride
@staticmethod
def convert_seq_to_patch_view(
mask: torch.Tensor, patch_len: int = 8, stride: Optional[int] = None
):
"""
Input:
mask : torch.Tensor of shape [batch_size x seq_len]
Output
mask : torch.Tensor of shape [batch_size x n_patches]
"""
stride = patch_len if stride is None else stride
mask = mask.unfold(dimension=-1, size=patch_len, step=stride)
# mask : [batch_size x n_patches x patch_len]
return (mask.sum(dim=-1) == patch_len).long()
@staticmethod
def convert_patch_to_seq_view(
mask: torch.Tensor,
patch_len: int = 8,
):
"""
Input:
mask : torch.Tensor of shape [batch_size x n_patches]
Output:
mask : torch.Tensor of shape [batch_size x seq_len]
"""
return mask.repeat_interleave(patch_len, dim=-1)
def generate_mask(self, x: torch.Tensor, input_mask: Optional[torch.Tensor] = None):
"""
Input:
x : torch.Tensor of shape
[batch_size x n_channels x n_patches x patch_len] or
[batch_size x n_channels x seq_len]
input_mask: torch.Tensor of shape [batch_size x seq_len] or
[batch_size x n_patches]
Output:
mask : torch.Tensor of shape [batch_size x seq_len]
"""
if x.ndim == 4:
return self._mask_patch_view(x, input_mask=input_mask)
elif x.ndim == 3:
return self._mask_seq_view(x, input_mask=input_mask)
def _mask_patch_view(self, x, input_mask=None):
"""
Input:
x : torch.Tensor of shape
[batch_size x n_channels x n_patches x patch_len]
input_mask: torch.Tensor of shape [batch_size x seq_len]
Output:
mask : torch.Tensor of shape [batch_size x n_patches]
"""
input_mask = self.convert_seq_to_patch_view(
input_mask, self.patch_len, self.stride
)
n_observed_patches = input_mask.sum(dim=-1, keepdim=True) # batch_size x 1
batch_size, _, n_patches, _ = x.shape
len_keep = torch.ceil(n_observed_patches * (1 - self.mask_ratio)).long()
noise = torch.rand(
batch_size, n_patches, device=x.device
) # noise in [0, 1], batch_size x n_channels x n_patches
noise = torch.where(
input_mask == 1, noise, torch.ones_like(noise)
) # only keep the noise of observed patches
# Sort noise for each sample
ids_shuffle = torch.argsort(
noise, dim=1
) # Ascend: small is keep, large is remove
ids_restore = torch.argsort(
ids_shuffle, dim=1
) # ids_restore: [batch_size x n_patches]
# Generate the binary mask: 0 is keep, 1 is remove
mask = torch.zeros(
[batch_size, n_patches], device=x.device
) # mask: [batch_size x n_patches]
for i in range(batch_size):
mask[i, : len_keep[i]] = 1
# Unshuffle to get the binary mask
mask = torch.gather(mask, dim=1, index=ids_restore)
return mask.long()
def _mask_seq_view(self, x, input_mask=None):
"""
Input:
x : torch.Tensor of shape
[batch_size x n_channels x seq_len]
input_mask: torch.Tensor of shape [batch_size x seq_len]
Output:
mask : torch.Tensor of shape [batch_size x seq_len]
"""
x = x.unfold(dimension=-1, size=self.patch_len, step=self.stride)
mask = self._mask_patch_view(x, input_mask=input_mask)
return self.convert_patch_to_seq_view(mask, self.patch_len).long()
# refers: https://github.com/moment-timeseries-foundation-model/moment/blob/088b253a1138ac7e48a7efc9bf902336c9eec8d9/momentfm/models/layers/revin.py#L5
def nanvar(tensor, dim=None, keepdim=False):
tensor_mean = tensor.nanmean(dim=dim, keepdim=True)
output = (tensor - tensor_mean).square().nanmean(dim=dim, keepdim=keepdim)
return output
# refers: https://github.com/moment-timeseries-foundation-model/moment/blob/088b253a1138ac7e48a7efc9bf902336c9eec8d9/momentfm/models/layers/revin.py#L11
def nanstd(tensor, dim=None, keepdim=False):
output = nanvar(tensor, dim=dim, keepdim=keepdim)
output = output.sqrt()
return output
# refers: https://github.com/moment-timeseries-foundation-model/moment/blob/088b253a1138ac7e48a7efc9bf902336c9eec8d9/momentfm/models/layers/revin.py#L17
class RevIN(nn.Module):
def __init__(self, num_features: int, eps: float = 1e-5, affine: bool = False):
"""
:param num_features: the number of features or channels
:param eps: a value added for numerical stability
:param affine: if True, RevIN has learnable affine parameters
"""
super(RevIN, self).__init__()
self.num_features = num_features
self.eps = eps
self.affine = affine
if self.affine:
self._init_params()
def forward(self, x: torch.Tensor, mode: str = "norm", mask: torch.Tensor = None):
"""
:param x: input tensor of shape (batch_size, n_channels, seq_len)
:param mode: 'norm' or 'denorm'
:param mask: input mask of shape (batch_size, seq_len)
:return: RevIN transformed tensor
"""
if mode == "norm":
self._get_statistics(x, mask=mask)
x = self._normalize(x)
elif mode == "denorm":
x = self._denormalize(x)
else:
raise NotImplementedError
return x
def _init_params(self):
# initialize RevIN params: (C,)
self.affine_weight = nn.Parameter(torch.ones(1, self.num_features, 1))
self.affine_bias = nn.Parameter(torch.zeros(1, self.num_features, 1))
def _get_statistics(self, x, mask=None):
"""
x : batch_size x n_channels x seq_len
mask : batch_size x seq_len
"""
if mask is None:
mask = torch.ones((x.shape[0], x.shape[-1]))
n_channels = x.shape[1]
mask = mask.unsqueeze(1).repeat(1, n_channels, 1).bool()
# Set masked positions to NaN, and unmasked positions are taken from x
masked_x = torch.where(mask, x, torch.nan)
self.mean = torch.nanmean(masked_x, dim=-1, keepdim=True).detach()
self.stdev = nanstd(masked_x, dim=-1, keepdim=True).detach() + self.eps
# self.stdev = torch.sqrt(
# torch.var(masked_x, dim=-1, keepdim=True) + self.eps).get_data().detach()
# NOTE: By default not bessel correction
def _normalize(self, x):
x = x - self.mean
x = x / self.stdev
if self.affine:
x = x * self.affine_weight
x = x + self.affine_bias
return x
def _denormalize(self, x):
if self.affine:
x = x - self.affine_bias
x = x / (self.affine_weight + self.eps * self.eps)
x = x * self.stdev
x = x + self.mean
return x
# refers: https://github.com/moment-timeseries-foundation-model/moment/blob/088b253a1138ac7e48a7efc9bf902336c9eec8d9/momentfm/models/layers/embed.py#L10
class PositionalEmbedding(nn.Module):
def __init__(self, d_model, max_len=5000, model_name="MOMENT"):
super(PositionalEmbedding, self).__init__()
self.model_name = model_name
# Compute the positional encodings once in log space.
pe = torch.zeros(max_len, d_model).float()
pe.require_grad = False
position = torch.arange(0, max_len).float().unsqueeze(1)
div_term = (
torch.arange(0, d_model, 2).float() * -(math.log(10000.0) / d_model)
).exp()
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0)
self.register_buffer("pe", pe)
def forward(self, x):
if (
self.model_name == "MOMENT"
or self.model_name == "TimesNet"
or self.model_name == "GPT4TS"
):
return self.pe[:, : x.size(2)]
else:
return self.pe[:, : x.size(1)]
# refers: https://github.com/moment-timeseries-foundation-model/moment/blob/088b253a1138ac7e48a7efc9bf902336c9eec8d9/momentfm/models/layers/embed.py#L181
class PatchEmbedding(nn.Module):
def __init__(
self,
d_model: int = 768,
seq_len: int = 512,
patch_len: int = 8,
stride: int = 8,
dropout: int = 0.1,
add_positional_embedding: bool = False,
value_embedding_bias: bool = False,
orth_gain: float = 1.41,
):
super(PatchEmbedding, self).__init__()
self.patch_len = patch_len
self.seq_len = seq_len
self.stride = stride
self.d_model = d_model
self.add_positional_embedding = add_positional_embedding
self.value_embedding = nn.Linear(patch_len, d_model, bias=value_embedding_bias)
self.mask_embedding = nn.Parameter(torch.zeros(d_model))
if orth_gain is not None:
torch.nn.init.orthogonal_(self.value_embedding.weight, gain=orth_gain)
if value_embedding_bias:
self.value_embedding.bias.data.zero_()
# torch.nn.init.orthogonal_(self.mask_embedding, gain=orth_gain) # Fails
# Positional embedding
if self.add_positional_embedding:
self.position_embedding = PositionalEmbedding(d_model)
# Residual dropout
self.dropout = nn.Dropout(dropout)
def forward(self, x: torch.Tensor, mask: torch.Tensor = None) -> torch.Tensor:
mask = Masking.convert_seq_to_patch_view(
mask, patch_len=self.patch_len
).unsqueeze(-1)
# mask : [batch_size x n_patches x 1]
n_channels = x.shape[1]
mask = (
mask.repeat_interleave(self.d_model, dim=-1)
.unsqueeze(1)
.repeat(1, n_channels, 1, 1)
)
# mask : [batch_size x n_channels x n_patches x d_model]
# Input encoding
x = mask * self.value_embedding(x) + (1 - mask) * self.mask_embedding
if self.add_positional_embedding:
x = x + self.position_embedding(x)
return self.dropout(x)
# refers: https://github.com/moment-timeseries-foundation-model/moment/blob/088b253a1138ac7e48a7efc9bf902336c9eec8d9/momentfm/models/layers/embed.py#L237C1-L251C17
class Patching(nn.Module):
def __init__(self, patch_len: int, stride: int):
super().__init__()
self.patch_len = patch_len
self.stride = stride
if self.stride != self.patch_len:
logger.warning(
"Stride and patch length are not equal. "
"This may lead to unexpected behavior."
)
def forward(self, x):
x = x.unfold(dimension=-1, size=self.patch_len, step=self.stride)
# x : [batch_size x n_channels x num_patch x patch_len]
return x
class MomentPreTrainedModel(PreTrainedModel):
config_class = MomentConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["T5Block"]
_skip_keys_device_placement = ""
# 本来のT5の_init_weightsはもっと詳細だが、事前学習の予定はないためここでは簡単にしている。
# refers: https://github.com/huggingface/transformers/blob/517df566f572d90e6301df87870f651f0d1b1110/src/transformers/models/t5/modeling_t5.py#L810
def _init_weights(self, module):
std = self.config.t5_config["initializer_factor"]
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
class MomentEmbeddingModel(MomentPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.config = config
self.seq_len = config.seq_len
self.patch_len = config.patch_len
# TODO: normalizer, tokenizerはProcessor側に配置するべきか?
# 現状の考え: 特にMomentから切り離す用途もない。
#       Processor側では入力の512timestepsへの切り取り等、
#       input validationとTensorへの切り替えを行うで良さそう。
self.normalizer = RevIN(
num_features=getattr(config, "revin_num_features", 1), eps=getattr(config, "revin_eps", 1e-5), affine=getattr(config, "revin_affine", False)
)
self.tokenizer = Patching(
patch_len=config.patch_len, stride=config.patch_stride_len
)
# モデル構成
self.patch_embedding = PatchEmbedding(
d_model=config.d_model,
seq_len=config.seq_len,
patch_len=config.patch_len,
stride=config.patch_stride_len,
dropout=getattr(config, "dropout", 0.1),
add_positional_embedding=getattr(config, "add_positional_embedding", True),
value_embedding_bias=getattr(config, "value_embedding_bias", False),
orth_gain=getattr(config, "orth_gain", 1.41),
)
self.mask_generator = Masking(mask_ratio=getattr(config, "mask_ratio", 0.0))
self.encoder = self._get_t5_encoder(config.t5_config, config.enable_gradient_checkpointing)
self.head = nn.Identity()
# Frozen parameters
self.freeze_embedder = getattr(config, "freeze_embedder", True)
self.freeze_encoder = getattr(config, "freeze_encoder", True)
self.freeze_head = getattr(config, "freeze_head", False)
if self.freeze_embedder:
self.patch_embedding = freeze_parameters(self.patch_embedding)
if self.freeze_encoder:
self.encoder = freeze_parameters(self.encoder)
if self.freeze_head:
self.head = freeze_parameters(self.head)
def _get_t5_encoder(self, config: dict, enable_gradient_checkpointing: bool) -> nn.Module:
# random initialize
# Momentでは(言語で)事前学習済みのモデルを取得することもできるようになっている
# refers: https://github.com/moment-timeseries-foundation-model/moment/blob/088b253a1138ac7e48a7efc9bf902336c9eec8d9/momentfm/models/moment.py#L205
t5_config = T5Config.from_dict(config)
t5_model = T5Model(t5_config)
t5_model_encoder = t5_model.get_encoder()
if enable_gradient_checkpointing:
t5_model_encoder.gradient_checkpointing_enable()
logger.info("Enabling gradient checkpointing.")
return t5_model_encoder
def embed(
self,
x_enc: torch.Tensor,
input_mask: torch.Tensor = None,
reduction: str = "mean",
**kwargs,
) -> TimeseriesOutputs:
batch_size, n_channels, seq_len = x_enc.shape
if input_mask is None:
input_mask = torch.ones((batch_size, seq_len)).to(x_enc.device)
x_enc = self.normalizer(x=x_enc, mask=input_mask, mode="norm")
x_enc = torch.nan_to_num(x_enc, nan=0, posinf=0, neginf=0)
input_mask_patch_view = Masking.convert_seq_to_patch_view(
input_mask, self.patch_len
)
x_enc = self.tokenizer(x=x_enc)
enc_in = self.patch_embedding(x_enc, mask=input_mask)
n_patches = enc_in.shape[2]
enc_in = enc_in.reshape(
(batch_size * n_channels, n_patches, self.config.d_model)
)
patch_view_mask = Masking.convert_seq_to_patch_view(input_mask, self.patch_len)
attention_mask = patch_view_mask.repeat_interleave(n_channels, dim=0)
outputs = self.encoder(inputs_embeds=enc_in, attention_mask=attention_mask)
enc_out = outputs.last_hidden_state
enc_out = enc_out.reshape((-1, n_channels, n_patches, self.config.d_model))
# [batch_size x n_channels x n_patches x d_model]
# For Mists model
# [batch_size, n_channels x n_patches, d_model]
hidden_states = enc_out.reshape(batch_size, n_channels * n_patches, self.config.d_model)
if reduction == "mean":
enc_out = enc_out.mean(dim=1, keepdim=False) # Mean across channels
# [batch_size x n_patches x d_model]
input_mask_patch_view = input_mask_patch_view.unsqueeze(-1).repeat(
1, 1, self.config.d_model
)
enc_out = (input_mask_patch_view * enc_out).sum(
dim=1
) / input_mask_patch_view.sum(dim=1)
else:
raise NotImplementedError(f"Reduction method {reduction} not implemented.")
return TimeseriesOutputs(
embeddings=enc_out, input_mask=input_mask, metadata=reduction, hidden_states=hidden_states
)
def forward(
self,
time_series_values: torch.Tensor,
# mask: torch.Tensor = None,
input_mask: torch.Tensor = None,
**kwargs,
) -> TimeseriesOutputs:
if input_mask is None:
input_mask = torch.ones_like(time_series_values[:, 0, :])
return self.embed(x_enc=time_series_values, input_mask=input_mask, **kwargs)
# refers: https://github.com/moment-timeseries-foundation-model/moment/blob/088b253a1138ac7e48a7efc9bf902336c9eec8d9/momentfm/models/moment.py#L601
def freeze_parameters(model):
"""
Freeze parameters of the model
"""
# Freeze the parameters
for name, param in model.named_parameters():
param.requires_grad = False
return model