wav2vec2 / README.md
jwieczorekhabana's picture
Update README.md
799cb20
|
raw
history blame
2.4 kB
metadata
license: apache-2.0

Optimum Habana is the interface between the Hugging Face Transformers and Diffusers libraries and Habana's Gaudi processor (HPU). It provides a set of tools enabling easy and fast model loading, training and inference on single- and multi-HPU settings for different downstream tasks. Learn more about how to take advantage of the power of Habana HPUs to train and deploy Transformers and Diffusers models at hf.co/hardware/habana.

Wav2Vec2 model HPU configuration

This model only contains the GaudiConfig file for running the Wav2Vec2 model on Habana's Gaudi processors (HPU).

This model contains no model weights, only a GaudiConfig.

This enables to specify:

  • use_fused_adam: whether to use Habana's custom AdamW implementation
  • use_fused_clip_norm: whether to use Habana's fused gradient norm clipping operator
  • use_torch_autocast: whether to use Torch Autocast for managing mixed precision

Usage

The model is instantiated the same way as in the Transformers library. The only difference is that there are a few new training arguments specific to HPUs.
This model is supported only in mixed precision training with bf16 type.

Here is an audio classification example script to fine-tune a model. You can run it with Wav2Vec2 with the following command:

python run_audio_classification.py \
    --model_name_or_path facebook/wav2vec2-base \
    --dataset_name superb \
    --dataset_config_name ks \
    --output_dir /tmp/wav2vec2-base-ft-keyword-spotting \
    --overwrite_output_dir \
    --remove_unused_columns False \
    --do_train \
    --do_eval \
    --learning_rate 3e-5 \
    --max_length_seconds 1 \
    --attention_mask False \
    --warmup_ratio 0.1 \
    --num_train_epochs 5 \
    --per_device_train_batch_size 256 \
    --per_device_eval_batch_size 256 \
    --dataloader_num_workers 4 \
    --seed 27 \
    --use_habana \
    --use_lazy_mode \
    --gaudi_config_name Habana/wav2vec2 \
    --throughput_warmup_steps 2 \
    --bf16

Check the documentation out for more advanced usage and examples.