NERBorder / README.md
H336104's picture
End of training
fe6bea7 verified
metadata
base_model: google-bert/bert-base-chinese
tags:
  - generated_from_trainer
datasets:
  - generator
metrics:
  - precision
  - recall
  - f1
model-index:
  - name: NERBorder
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: generator
          type: generator
          config: default
          split: train
          args: default
        metrics:
          - name: Precision
            type: precision
            value: 0.901610712050607
          - name: Recall
            type: recall
            value: 0.8982985303950894
          - name: F1
            type: f1
            value: 0.8999515736949341

NERBorder

This model is a fine-tuned version of google-bert/bert-base-chinese on the generator dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5195
  • Precision: 0.9016
  • Recall: 0.8983
  • F1: 0.9000

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1
0.2099 1.0 416 0.1940 0.8281 0.8152 0.8216
0.1658 2.0 832 0.1799 0.8464 0.8590 0.8527
0.1276 3.0 1248 0.1821 0.8795 0.8639 0.8716
0.1076 4.0 1664 0.1961 0.8903 0.8788 0.8845
0.0792 5.0 2080 0.2277 0.8787 0.8869 0.8828
0.054 6.0 2496 0.2395 0.9084 0.8701 0.8888
0.0433 7.0 2912 0.2991 0.8999 0.8915 0.8957
0.0288 8.0 3328 0.3374 0.8919 0.8935 0.8927
0.022 9.0 3744 0.3752 0.9054 0.8921 0.8987
0.0211 10.0 4160 0.4105 0.8952 0.8985 0.8968
0.0147 11.0 4576 0.4084 0.9013 0.9004 0.9009
0.0095 12.0 4992 0.4542 0.9047 0.8952 0.8999
0.01 13.0 5408 0.4516 0.9086 0.8896 0.8990
0.0087 14.0 5824 0.4521 0.9025 0.8935 0.8980
0.0069 15.0 6240 0.4878 0.9034 0.9022 0.9028
0.0042 16.0 6656 0.5097 0.9021 0.8997 0.9009
0.006 17.0 7072 0.5195 0.9054 0.9008 0.9031
0.0043 18.0 7488 0.5032 0.9009 0.8977 0.8993
0.0029 19.0 7904 0.5155 0.9003 0.8962 0.8983
0.0034 20.0 8320 0.5195 0.9016 0.8983 0.9000

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.0.1
  • Datasets 2.16.1
  • Tokenizers 0.15.0