|
--- |
|
library_name: transformers |
|
license: apache-2.0 |
|
base_model: facebook/wav2vec2-xls-r-1b |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: wav2vec2-1b-E10_speed |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# wav2vec2-1b-E10_speed |
|
|
|
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.8527 |
|
- Cer: 21.5519 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 8 |
|
- total_train_batch_size: 16 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 50 |
|
- num_epochs: 5 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Cer | |
|
|:-------------:|:------:|:----:|:---------------:|:-------:| |
|
| 21.0525 | 0.2580 | 200 | 4.6684 | 100.0 | |
|
| 3.9541 | 0.5160 | 400 | 2.8257 | 57.0724 | |
|
| 1.7271 | 0.7741 | 600 | 1.9449 | 44.8015 | |
|
| 1.3002 | 1.0321 | 800 | 1.4433 | 34.1224 | |
|
| 1.0165 | 1.2901 | 1000 | 1.3209 | 30.7272 | |
|
| 0.895 | 1.5481 | 1200 | 1.2042 | 29.3351 | |
|
| 0.8431 | 1.8062 | 1400 | 1.1021 | 27.5905 | |
|
| 0.7042 | 2.0642 | 1600 | 1.3478 | 32.1311 | |
|
| 0.6066 | 2.3222 | 1800 | 1.3199 | 32.1487 | |
|
| 0.589 | 2.5802 | 2000 | 1.1196 | 27.7961 | |
|
| 0.549 | 2.8383 | 2200 | 1.1813 | 29.9048 | |
|
| 0.4874 | 3.0963 | 2400 | 0.9759 | 24.7415 | |
|
| 0.3897 | 3.3543 | 2600 | 0.9338 | 23.9720 | |
|
| 0.3993 | 3.6123 | 2800 | 0.9023 | 22.8560 | |
|
| 0.361 | 3.8703 | 3000 | 0.8922 | 22.9911 | |
|
| 0.3091 | 4.1284 | 3200 | 0.9250 | 23.5491 | |
|
| 0.2812 | 4.3864 | 3400 | 0.8751 | 22.0982 | |
|
| 0.2639 | 4.6444 | 3600 | 0.8540 | 21.5754 | |
|
| 0.2451 | 4.9024 | 3800 | 0.8527 | 21.5519 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.45.2 |
|
- Pytorch 2.3.1.post100 |
|
- Datasets 2.19.1 |
|
- Tokenizers 0.20.1 |
|
|