GuiTap's picture
End of training
85dbd66 verified
metadata
license: apache-2.0
base_model: distilbert/distilbert-base-multilingual-cased
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: distilbert-base-multilingual-cased-finetuned-ner-geocorpus
    results: []

distilbert-base-multilingual-cased-finetuned-ner-geocorpus

This model is a fine-tuned version of distilbert/distilbert-base-multilingual-cased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1028
  • Precision: 0.8079
  • Recall: 0.8868
  • F1: 0.8455
  • Accuracy: 0.9747

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 276 0.1866 0.7323 0.6760 0.7030 0.9551
0.2877 2.0 552 0.1247 0.7870 0.7788 0.7829 0.9685
0.2877 3.0 828 0.1125 0.8547 0.7819 0.8167 0.9719
0.0858 4.0 1104 0.1043 0.8274 0.8463 0.8368 0.9739
0.0858 5.0 1380 0.1062 0.8349 0.8349 0.8349 0.9730
0.0424 6.0 1656 0.1028 0.8079 0.8868 0.8455 0.9747
0.0424 7.0 1932 0.1139 0.8586 0.8702 0.8644 0.9769
0.0225 8.0 2208 0.1229 0.8511 0.9024 0.8760 0.9765

Framework versions

  • Transformers 4.41.1
  • Pytorch 2.1.2
  • Datasets 2.19.1
  • Tokenizers 0.19.1