GuiTap's picture
End of training
09ce2b1 verified
metadata
library_name: transformers
license: apache-2.0
base_model: google-bert/bert-base-multilingual-cased
tags:
  - generated_from_trainer
datasets:
  - told-br
metrics:
  - precision
  - recall
  - accuracy
  - f1
model-index:
  - name: bert-base-multilingual-cased-finetuned-hate-speech-ptbr
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: told-br
          type: told-br
          config: binary
          split: validation
          args: binary
        metrics:
          - name: Precision
            type: precision
            value: 0.702020202020202
          - name: Recall
            type: recall
            value: 0.7654185022026432
          - name: Accuracy
            type: accuracy
            value: 0.758095238095238
          - name: F1
            type: f1
            value: 0.7590123199739615

bert-base-multilingual-cased-finetuned-hate-speech-ptbr

This model is a fine-tuned version of google-bert/bert-base-multilingual-cased on the told-br dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6224
  • Precision: 0.7020
  • Recall: 0.7654
  • Accuracy: 0.7581
  • F1: 0.7590

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Precision Recall Accuracy F1
0.5127 1.0 1050 0.4978 0.6500 0.8756 0.7424 0.7418
0.4415 2.0 2100 0.5206 0.7143 0.7104 0.7519 0.7518
0.3623 3.0 3150 0.6204 0.6747 0.8293 0.7533 0.7542
0.283 4.0 4200 0.6224 0.7020 0.7654 0.7581 0.7590
0.2196 5.0 5250 0.7572 0.6954 0.7742 0.7557 0.7568

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.5.1+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.3