Muennighoff commited on
Commit
4430c41
·
verified ·
1 Parent(s): ee26b1f

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +2626 -0
README.md ADDED
@@ -0,0 +1,2626 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ pipeline_tag: text-generation
3
+ inference: true
4
+ license: apache-2.0
5
+ datasets:
6
+ - GritLM/tulu2
7
+ tags:
8
+ - mteb
9
+ model-index:
10
+ - name: GritLM-7B
11
+ results:
12
+ - task:
13
+ type: Classification
14
+ dataset:
15
+ type: mteb/amazon_counterfactual
16
+ name: MTEB AmazonCounterfactualClassification (en)
17
+ config: en
18
+ split: test
19
+ revision: e8379541af4e31359cca9fbcf4b00f2671dba205
20
+ metrics:
21
+ - type: accuracy
22
+ value: 81.17910447761194
23
+ - type: ap
24
+ value: 46.26260671758199
25
+ - type: f1
26
+ value: 75.44565719934167
27
+ - task:
28
+ type: Classification
29
+ dataset:
30
+ type: mteb/amazon_polarity
31
+ name: MTEB AmazonPolarityClassification
32
+ config: default
33
+ split: test
34
+ revision: e2d317d38cd51312af73b3d32a06d1a08b442046
35
+ metrics:
36
+ - type: accuracy
37
+ value: 96.5161
38
+ - type: ap
39
+ value: 94.79131981460425
40
+ - type: f1
41
+ value: 96.51506148413065
42
+ - task:
43
+ type: Classification
44
+ dataset:
45
+ type: mteb/amazon_reviews_multi
46
+ name: MTEB AmazonReviewsClassification (en)
47
+ config: en
48
+ split: test
49
+ revision: 1399c76144fd37290681b995c656ef9b2e06e26d
50
+ metrics:
51
+ - type: accuracy
52
+ value: 57.806000000000004
53
+ - type: f1
54
+ value: 56.78350156257903
55
+ - task:
56
+ type: Retrieval
57
+ dataset:
58
+ type: arguana
59
+ name: MTEB ArguAna
60
+ config: default
61
+ split: test
62
+ revision: None
63
+ metrics:
64
+ - type: map_at_1
65
+ value: 38.478
66
+ - type: map_at_10
67
+ value: 54.955
68
+ - type: map_at_100
69
+ value: 54.955
70
+ - type: map_at_1000
71
+ value: 54.955
72
+ - type: map_at_3
73
+ value: 50.888999999999996
74
+ - type: map_at_5
75
+ value: 53.349999999999994
76
+ - type: mrr_at_1
77
+ value: 39.757999999999996
78
+ - type: mrr_at_10
79
+ value: 55.449000000000005
80
+ - type: mrr_at_100
81
+ value: 55.449000000000005
82
+ - type: mrr_at_1000
83
+ value: 55.449000000000005
84
+ - type: mrr_at_3
85
+ value: 51.37500000000001
86
+ - type: mrr_at_5
87
+ value: 53.822
88
+ - type: ndcg_at_1
89
+ value: 38.478
90
+ - type: ndcg_at_10
91
+ value: 63.239999999999995
92
+ - type: ndcg_at_100
93
+ value: 63.239999999999995
94
+ - type: ndcg_at_1000
95
+ value: 63.239999999999995
96
+ - type: ndcg_at_3
97
+ value: 54.935
98
+ - type: ndcg_at_5
99
+ value: 59.379000000000005
100
+ - type: precision_at_1
101
+ value: 38.478
102
+ - type: precision_at_10
103
+ value: 8.933
104
+ - type: precision_at_100
105
+ value: 0.893
106
+ - type: precision_at_1000
107
+ value: 0.089
108
+ - type: precision_at_3
109
+ value: 22.214
110
+ - type: precision_at_5
111
+ value: 15.491
112
+ - type: recall_at_1
113
+ value: 38.478
114
+ - type: recall_at_10
115
+ value: 89.331
116
+ - type: recall_at_100
117
+ value: 89.331
118
+ - type: recall_at_1000
119
+ value: 89.331
120
+ - type: recall_at_3
121
+ value: 66.643
122
+ - type: recall_at_5
123
+ value: 77.45400000000001
124
+ - task:
125
+ type: Clustering
126
+ dataset:
127
+ type: mteb/arxiv-clustering-p2p
128
+ name: MTEB ArxivClusteringP2P
129
+ config: default
130
+ split: test
131
+ revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
132
+ metrics:
133
+ - type: v_measure
134
+ value: 51.67144081472449
135
+ - task:
136
+ type: Clustering
137
+ dataset:
138
+ type: mteb/arxiv-clustering-s2s
139
+ name: MTEB ArxivClusteringS2S
140
+ config: default
141
+ split: test
142
+ revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
143
+ metrics:
144
+ - type: v_measure
145
+ value: 48.11256154264126
146
+ - task:
147
+ type: Reranking
148
+ dataset:
149
+ type: mteb/askubuntudupquestions-reranking
150
+ name: MTEB AskUbuntuDupQuestions
151
+ config: default
152
+ split: test
153
+ revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
154
+ metrics:
155
+ - type: map
156
+ value: 67.33801955487878
157
+ - type: mrr
158
+ value: 80.71549487754474
159
+ - task:
160
+ type: STS
161
+ dataset:
162
+ type: mteb/biosses-sts
163
+ name: MTEB BIOSSES
164
+ config: default
165
+ split: test
166
+ revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
167
+ metrics:
168
+ - type: cos_sim_pearson
169
+ value: 88.1935203751726
170
+ - type: cos_sim_spearman
171
+ value: 86.35497970498659
172
+ - type: euclidean_pearson
173
+ value: 85.46910708503744
174
+ - type: euclidean_spearman
175
+ value: 85.13928935405485
176
+ - type: manhattan_pearson
177
+ value: 85.68373836333303
178
+ - type: manhattan_spearman
179
+ value: 85.40013867117746
180
+ - task:
181
+ type: Classification
182
+ dataset:
183
+ type: mteb/banking77
184
+ name: MTEB Banking77Classification
185
+ config: default
186
+ split: test
187
+ revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
188
+ metrics:
189
+ - type: accuracy
190
+ value: 88.46753246753248
191
+ - type: f1
192
+ value: 88.43006344981134
193
+ - task:
194
+ type: Clustering
195
+ dataset:
196
+ type: mteb/biorxiv-clustering-p2p
197
+ name: MTEB BiorxivClusteringP2P
198
+ config: default
199
+ split: test
200
+ revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
201
+ metrics:
202
+ - type: v_measure
203
+ value: 40.86793640310432
204
+ - task:
205
+ type: Clustering
206
+ dataset:
207
+ type: mteb/biorxiv-clustering-s2s
208
+ name: MTEB BiorxivClusteringS2S
209
+ config: default
210
+ split: test
211
+ revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
212
+ metrics:
213
+ - type: v_measure
214
+ value: 39.80291334130727
215
+ - task:
216
+ type: Retrieval
217
+ dataset:
218
+ type: BeIR/cqadupstack
219
+ name: MTEB CQADupstackAndroidRetrieval
220
+ config: default
221
+ split: test
222
+ revision: None
223
+ metrics:
224
+ - type: map_at_1
225
+ value: 38.421
226
+ - type: map_at_10
227
+ value: 52.349000000000004
228
+ - type: map_at_100
229
+ value: 52.349000000000004
230
+ - type: map_at_1000
231
+ value: 52.349000000000004
232
+ - type: map_at_3
233
+ value: 48.17
234
+ - type: map_at_5
235
+ value: 50.432
236
+ - type: mrr_at_1
237
+ value: 47.353
238
+ - type: mrr_at_10
239
+ value: 58.387
240
+ - type: mrr_at_100
241
+ value: 58.387
242
+ - type: mrr_at_1000
243
+ value: 58.387
244
+ - type: mrr_at_3
245
+ value: 56.199
246
+ - type: mrr_at_5
247
+ value: 57.487
248
+ - type: ndcg_at_1
249
+ value: 47.353
250
+ - type: ndcg_at_10
251
+ value: 59.202
252
+ - type: ndcg_at_100
253
+ value: 58.848
254
+ - type: ndcg_at_1000
255
+ value: 58.831999999999994
256
+ - type: ndcg_at_3
257
+ value: 54.112
258
+ - type: ndcg_at_5
259
+ value: 56.312
260
+ - type: precision_at_1
261
+ value: 47.353
262
+ - type: precision_at_10
263
+ value: 11.459
264
+ - type: precision_at_100
265
+ value: 1.146
266
+ - type: precision_at_1000
267
+ value: 0.11499999999999999
268
+ - type: precision_at_3
269
+ value: 26.133
270
+ - type: precision_at_5
271
+ value: 18.627
272
+ - type: recall_at_1
273
+ value: 38.421
274
+ - type: recall_at_10
275
+ value: 71.89
276
+ - type: recall_at_100
277
+ value: 71.89
278
+ - type: recall_at_1000
279
+ value: 71.89
280
+ - type: recall_at_3
281
+ value: 56.58
282
+ - type: recall_at_5
283
+ value: 63.125
284
+ - task:
285
+ type: Retrieval
286
+ dataset:
287
+ type: BeIR/cqadupstack
288
+ name: MTEB CQADupstackEnglishRetrieval
289
+ config: default
290
+ split: test
291
+ revision: None
292
+ metrics:
293
+ - type: map_at_1
294
+ value: 38.025999999999996
295
+ - type: map_at_10
296
+ value: 50.590999999999994
297
+ - type: map_at_100
298
+ value: 51.99700000000001
299
+ - type: map_at_1000
300
+ value: 52.11599999999999
301
+ - type: map_at_3
302
+ value: 47.435
303
+ - type: map_at_5
304
+ value: 49.236000000000004
305
+ - type: mrr_at_1
306
+ value: 48.28
307
+ - type: mrr_at_10
308
+ value: 56.814
309
+ - type: mrr_at_100
310
+ value: 57.446
311
+ - type: mrr_at_1000
312
+ value: 57.476000000000006
313
+ - type: mrr_at_3
314
+ value: 54.958
315
+ - type: mrr_at_5
316
+ value: 56.084999999999994
317
+ - type: ndcg_at_1
318
+ value: 48.28
319
+ - type: ndcg_at_10
320
+ value: 56.442
321
+ - type: ndcg_at_100
322
+ value: 60.651999999999994
323
+ - type: ndcg_at_1000
324
+ value: 62.187000000000005
325
+ - type: ndcg_at_3
326
+ value: 52.866
327
+ - type: ndcg_at_5
328
+ value: 54.515
329
+ - type: precision_at_1
330
+ value: 48.28
331
+ - type: precision_at_10
332
+ value: 10.586
333
+ - type: precision_at_100
334
+ value: 1.6310000000000002
335
+ - type: precision_at_1000
336
+ value: 0.20600000000000002
337
+ - type: precision_at_3
338
+ value: 25.945
339
+ - type: precision_at_5
340
+ value: 18.076
341
+ - type: recall_at_1
342
+ value: 38.025999999999996
343
+ - type: recall_at_10
344
+ value: 66.11399999999999
345
+ - type: recall_at_100
346
+ value: 83.339
347
+ - type: recall_at_1000
348
+ value: 92.413
349
+ - type: recall_at_3
350
+ value: 54.493
351
+ - type: recall_at_5
352
+ value: 59.64699999999999
353
+ - task:
354
+ type: Retrieval
355
+ dataset:
356
+ type: BeIR/cqadupstack
357
+ name: MTEB CQADupstackGamingRetrieval
358
+ config: default
359
+ split: test
360
+ revision: None
361
+ metrics:
362
+ - type: map_at_1
363
+ value: 47.905
364
+ - type: map_at_10
365
+ value: 61.58
366
+ - type: map_at_100
367
+ value: 62.605
368
+ - type: map_at_1000
369
+ value: 62.637
370
+ - type: map_at_3
371
+ value: 58.074000000000005
372
+ - type: map_at_5
373
+ value: 60.260000000000005
374
+ - type: mrr_at_1
375
+ value: 54.42
376
+ - type: mrr_at_10
377
+ value: 64.847
378
+ - type: mrr_at_100
379
+ value: 65.403
380
+ - type: mrr_at_1000
381
+ value: 65.41900000000001
382
+ - type: mrr_at_3
383
+ value: 62.675000000000004
384
+ - type: mrr_at_5
385
+ value: 64.101
386
+ - type: ndcg_at_1
387
+ value: 54.42
388
+ - type: ndcg_at_10
389
+ value: 67.394
390
+ - type: ndcg_at_100
391
+ value: 70.846
392
+ - type: ndcg_at_1000
393
+ value: 71.403
394
+ - type: ndcg_at_3
395
+ value: 62.025
396
+ - type: ndcg_at_5
397
+ value: 65.032
398
+ - type: precision_at_1
399
+ value: 54.42
400
+ - type: precision_at_10
401
+ value: 10.646
402
+ - type: precision_at_100
403
+ value: 1.325
404
+ - type: precision_at_1000
405
+ value: 0.13999999999999999
406
+ - type: precision_at_3
407
+ value: 27.398
408
+ - type: precision_at_5
409
+ value: 18.796
410
+ - type: recall_at_1
411
+ value: 47.905
412
+ - type: recall_at_10
413
+ value: 80.84599999999999
414
+ - type: recall_at_100
415
+ value: 95.078
416
+ - type: recall_at_1000
417
+ value: 98.878
418
+ - type: recall_at_3
419
+ value: 67.05600000000001
420
+ - type: recall_at_5
421
+ value: 74.261
422
+ - task:
423
+ type: Retrieval
424
+ dataset:
425
+ type: BeIR/cqadupstack
426
+ name: MTEB CQADupstackGisRetrieval
427
+ config: default
428
+ split: test
429
+ revision: None
430
+ metrics:
431
+ - type: map_at_1
432
+ value: 30.745
433
+ - type: map_at_10
434
+ value: 41.021
435
+ - type: map_at_100
436
+ value: 41.021
437
+ - type: map_at_1000
438
+ value: 41.021
439
+ - type: map_at_3
440
+ value: 37.714999999999996
441
+ - type: map_at_5
442
+ value: 39.766
443
+ - type: mrr_at_1
444
+ value: 33.559
445
+ - type: mrr_at_10
446
+ value: 43.537
447
+ - type: mrr_at_100
448
+ value: 43.537
449
+ - type: mrr_at_1000
450
+ value: 43.537
451
+ - type: mrr_at_3
452
+ value: 40.546
453
+ - type: mrr_at_5
454
+ value: 42.439
455
+ - type: ndcg_at_1
456
+ value: 33.559
457
+ - type: ndcg_at_10
458
+ value: 46.781
459
+ - type: ndcg_at_100
460
+ value: 46.781
461
+ - type: ndcg_at_1000
462
+ value: 46.781
463
+ - type: ndcg_at_3
464
+ value: 40.516000000000005
465
+ - type: ndcg_at_5
466
+ value: 43.957
467
+ - type: precision_at_1
468
+ value: 33.559
469
+ - type: precision_at_10
470
+ value: 7.198
471
+ - type: precision_at_100
472
+ value: 0.72
473
+ - type: precision_at_1000
474
+ value: 0.07200000000000001
475
+ - type: precision_at_3
476
+ value: 17.1
477
+ - type: precision_at_5
478
+ value: 12.316
479
+ - type: recall_at_1
480
+ value: 30.745
481
+ - type: recall_at_10
482
+ value: 62.038000000000004
483
+ - type: recall_at_100
484
+ value: 62.038000000000004
485
+ - type: recall_at_1000
486
+ value: 62.038000000000004
487
+ - type: recall_at_3
488
+ value: 45.378
489
+ - type: recall_at_5
490
+ value: 53.580000000000005
491
+ - task:
492
+ type: Retrieval
493
+ dataset:
494
+ type: BeIR/cqadupstack
495
+ name: MTEB CQADupstackMathematicaRetrieval
496
+ config: default
497
+ split: test
498
+ revision: None
499
+ metrics:
500
+ - type: map_at_1
501
+ value: 19.637999999999998
502
+ - type: map_at_10
503
+ value: 31.05
504
+ - type: map_at_100
505
+ value: 31.05
506
+ - type: map_at_1000
507
+ value: 31.05
508
+ - type: map_at_3
509
+ value: 27.628000000000004
510
+ - type: map_at_5
511
+ value: 29.767
512
+ - type: mrr_at_1
513
+ value: 25.0
514
+ - type: mrr_at_10
515
+ value: 36.131
516
+ - type: mrr_at_100
517
+ value: 36.131
518
+ - type: mrr_at_1000
519
+ value: 36.131
520
+ - type: mrr_at_3
521
+ value: 33.333
522
+ - type: mrr_at_5
523
+ value: 35.143
524
+ - type: ndcg_at_1
525
+ value: 25.0
526
+ - type: ndcg_at_10
527
+ value: 37.478
528
+ - type: ndcg_at_100
529
+ value: 37.469
530
+ - type: ndcg_at_1000
531
+ value: 37.469
532
+ - type: ndcg_at_3
533
+ value: 31.757999999999996
534
+ - type: ndcg_at_5
535
+ value: 34.821999999999996
536
+ - type: precision_at_1
537
+ value: 25.0
538
+ - type: precision_at_10
539
+ value: 7.188999999999999
540
+ - type: precision_at_100
541
+ value: 0.719
542
+ - type: precision_at_1000
543
+ value: 0.07200000000000001
544
+ - type: precision_at_3
545
+ value: 15.837000000000002
546
+ - type: precision_at_5
547
+ value: 11.841
548
+ - type: recall_at_1
549
+ value: 19.637999999999998
550
+ - type: recall_at_10
551
+ value: 51.836000000000006
552
+ - type: recall_at_100
553
+ value: 51.836000000000006
554
+ - type: recall_at_1000
555
+ value: 51.836000000000006
556
+ - type: recall_at_3
557
+ value: 36.384
558
+ - type: recall_at_5
559
+ value: 43.964
560
+ - task:
561
+ type: Retrieval
562
+ dataset:
563
+ type: BeIR/cqadupstack
564
+ name: MTEB CQADupstackPhysicsRetrieval
565
+ config: default
566
+ split: test
567
+ revision: None
568
+ metrics:
569
+ - type: map_at_1
570
+ value: 34.884
571
+ - type: map_at_10
572
+ value: 47.88
573
+ - type: map_at_100
574
+ value: 47.88
575
+ - type: map_at_1000
576
+ value: 47.88
577
+ - type: map_at_3
578
+ value: 43.85
579
+ - type: map_at_5
580
+ value: 46.414
581
+ - type: mrr_at_1
582
+ value: 43.022
583
+ - type: mrr_at_10
584
+ value: 53.569
585
+ - type: mrr_at_100
586
+ value: 53.569
587
+ - type: mrr_at_1000
588
+ value: 53.569
589
+ - type: mrr_at_3
590
+ value: 51.075
591
+ - type: mrr_at_5
592
+ value: 52.725
593
+ - type: ndcg_at_1
594
+ value: 43.022
595
+ - type: ndcg_at_10
596
+ value: 54.461000000000006
597
+ - type: ndcg_at_100
598
+ value: 54.388000000000005
599
+ - type: ndcg_at_1000
600
+ value: 54.388000000000005
601
+ - type: ndcg_at_3
602
+ value: 48.864999999999995
603
+ - type: ndcg_at_5
604
+ value: 52.032000000000004
605
+ - type: precision_at_1
606
+ value: 43.022
607
+ - type: precision_at_10
608
+ value: 9.885
609
+ - type: precision_at_100
610
+ value: 0.988
611
+ - type: precision_at_1000
612
+ value: 0.099
613
+ - type: precision_at_3
614
+ value: 23.612
615
+ - type: precision_at_5
616
+ value: 16.997
617
+ - type: recall_at_1
618
+ value: 34.884
619
+ - type: recall_at_10
620
+ value: 68.12899999999999
621
+ - type: recall_at_100
622
+ value: 68.12899999999999
623
+ - type: recall_at_1000
624
+ value: 68.12899999999999
625
+ - type: recall_at_3
626
+ value: 52.428
627
+ - type: recall_at_5
628
+ value: 60.662000000000006
629
+ - task:
630
+ type: Retrieval
631
+ dataset:
632
+ type: BeIR/cqadupstack
633
+ name: MTEB CQADupstackProgrammersRetrieval
634
+ config: default
635
+ split: test
636
+ revision: None
637
+ metrics:
638
+ - type: map_at_1
639
+ value: 31.588
640
+ - type: map_at_10
641
+ value: 43.85
642
+ - type: map_at_100
643
+ value: 45.317
644
+ - type: map_at_1000
645
+ value: 45.408
646
+ - type: map_at_3
647
+ value: 39.73
648
+ - type: map_at_5
649
+ value: 42.122
650
+ - type: mrr_at_1
651
+ value: 38.927
652
+ - type: mrr_at_10
653
+ value: 49.582
654
+ - type: mrr_at_100
655
+ value: 50.39
656
+ - type: mrr_at_1000
657
+ value: 50.426
658
+ - type: mrr_at_3
659
+ value: 46.518
660
+ - type: mrr_at_5
661
+ value: 48.271
662
+ - type: ndcg_at_1
663
+ value: 38.927
664
+ - type: ndcg_at_10
665
+ value: 50.605999999999995
666
+ - type: ndcg_at_100
667
+ value: 56.22200000000001
668
+ - type: ndcg_at_1000
669
+ value: 57.724
670
+ - type: ndcg_at_3
671
+ value: 44.232
672
+ - type: ndcg_at_5
673
+ value: 47.233999999999995
674
+ - type: precision_at_1
675
+ value: 38.927
676
+ - type: precision_at_10
677
+ value: 9.429
678
+ - type: precision_at_100
679
+ value: 1.435
680
+ - type: precision_at_1000
681
+ value: 0.172
682
+ - type: precision_at_3
683
+ value: 21.271
684
+ - type: precision_at_5
685
+ value: 15.434000000000001
686
+ - type: recall_at_1
687
+ value: 31.588
688
+ - type: recall_at_10
689
+ value: 64.836
690
+ - type: recall_at_100
691
+ value: 88.066
692
+ - type: recall_at_1000
693
+ value: 97.748
694
+ - type: recall_at_3
695
+ value: 47.128
696
+ - type: recall_at_5
697
+ value: 54.954
698
+ - task:
699
+ type: Retrieval
700
+ dataset:
701
+ type: BeIR/cqadupstack
702
+ name: MTEB CQADupstackRetrieval
703
+ config: default
704
+ split: test
705
+ revision: None
706
+ metrics:
707
+ - type: map_at_1
708
+ value: 31.956083333333336
709
+ - type: map_at_10
710
+ value: 43.33483333333333
711
+ - type: map_at_100
712
+ value: 44.64883333333333
713
+ - type: map_at_1000
714
+ value: 44.75
715
+ - type: map_at_3
716
+ value: 39.87741666666666
717
+ - type: map_at_5
718
+ value: 41.86766666666667
719
+ - type: mrr_at_1
720
+ value: 38.06341666666667
721
+ - type: mrr_at_10
722
+ value: 47.839666666666666
723
+ - type: mrr_at_100
724
+ value: 48.644000000000005
725
+ - type: mrr_at_1000
726
+ value: 48.68566666666667
727
+ - type: mrr_at_3
728
+ value: 45.26358333333334
729
+ - type: mrr_at_5
730
+ value: 46.790000000000006
731
+ - type: ndcg_at_1
732
+ value: 38.06341666666667
733
+ - type: ndcg_at_10
734
+ value: 49.419333333333334
735
+ - type: ndcg_at_100
736
+ value: 54.50166666666667
737
+ - type: ndcg_at_1000
738
+ value: 56.161166666666674
739
+ - type: ndcg_at_3
740
+ value: 43.982416666666666
741
+ - type: ndcg_at_5
742
+ value: 46.638083333333334
743
+ - type: precision_at_1
744
+ value: 38.06341666666667
745
+ - type: precision_at_10
746
+ value: 8.70858333333333
747
+ - type: precision_at_100
748
+ value: 1.327
749
+ - type: precision_at_1000
750
+ value: 0.165
751
+ - type: precision_at_3
752
+ value: 20.37816666666667
753
+ - type: precision_at_5
754
+ value: 14.516333333333334
755
+ - type: recall_at_1
756
+ value: 31.956083333333336
757
+ - type: recall_at_10
758
+ value: 62.69458333333334
759
+ - type: recall_at_100
760
+ value: 84.46433333333334
761
+ - type: recall_at_1000
762
+ value: 95.58449999999999
763
+ - type: recall_at_3
764
+ value: 47.52016666666666
765
+ - type: recall_at_5
766
+ value: 54.36066666666666
767
+ - task:
768
+ type: Retrieval
769
+ dataset:
770
+ type: BeIR/cqadupstack
771
+ name: MTEB CQADupstackStatsRetrieval
772
+ config: default
773
+ split: test
774
+ revision: None
775
+ metrics:
776
+ - type: map_at_1
777
+ value: 28.912
778
+ - type: map_at_10
779
+ value: 38.291
780
+ - type: map_at_100
781
+ value: 39.44
782
+ - type: map_at_1000
783
+ value: 39.528
784
+ - type: map_at_3
785
+ value: 35.638
786
+ - type: map_at_5
787
+ value: 37.218
788
+ - type: mrr_at_1
789
+ value: 32.822
790
+ - type: mrr_at_10
791
+ value: 41.661
792
+ - type: mrr_at_100
793
+ value: 42.546
794
+ - type: mrr_at_1000
795
+ value: 42.603
796
+ - type: mrr_at_3
797
+ value: 39.238
798
+ - type: mrr_at_5
799
+ value: 40.726
800
+ - type: ndcg_at_1
801
+ value: 32.822
802
+ - type: ndcg_at_10
803
+ value: 43.373
804
+ - type: ndcg_at_100
805
+ value: 48.638
806
+ - type: ndcg_at_1000
807
+ value: 50.654999999999994
808
+ - type: ndcg_at_3
809
+ value: 38.643
810
+ - type: ndcg_at_5
811
+ value: 41.126000000000005
812
+ - type: precision_at_1
813
+ value: 32.822
814
+ - type: precision_at_10
815
+ value: 6.8709999999999996
816
+ - type: precision_at_100
817
+ value: 1.032
818
+ - type: precision_at_1000
819
+ value: 0.128
820
+ - type: precision_at_3
821
+ value: 16.82
822
+ - type: precision_at_5
823
+ value: 11.718
824
+ - type: recall_at_1
825
+ value: 28.912
826
+ - type: recall_at_10
827
+ value: 55.376999999999995
828
+ - type: recall_at_100
829
+ value: 79.066
830
+ - type: recall_at_1000
831
+ value: 93.664
832
+ - type: recall_at_3
833
+ value: 42.569
834
+ - type: recall_at_5
835
+ value: 48.719
836
+ - task:
837
+ type: Retrieval
838
+ dataset:
839
+ type: BeIR/cqadupstack
840
+ name: MTEB CQADupstackTexRetrieval
841
+ config: default
842
+ split: test
843
+ revision: None
844
+ metrics:
845
+ - type: map_at_1
846
+ value: 22.181
847
+ - type: map_at_10
848
+ value: 31.462
849
+ - type: map_at_100
850
+ value: 32.73
851
+ - type: map_at_1000
852
+ value: 32.848
853
+ - type: map_at_3
854
+ value: 28.57
855
+ - type: map_at_5
856
+ value: 30.182
857
+ - type: mrr_at_1
858
+ value: 27.185
859
+ - type: mrr_at_10
860
+ value: 35.846000000000004
861
+ - type: mrr_at_100
862
+ value: 36.811
863
+ - type: mrr_at_1000
864
+ value: 36.873
865
+ - type: mrr_at_3
866
+ value: 33.437
867
+ - type: mrr_at_5
868
+ value: 34.813
869
+ - type: ndcg_at_1
870
+ value: 27.185
871
+ - type: ndcg_at_10
872
+ value: 36.858000000000004
873
+ - type: ndcg_at_100
874
+ value: 42.501
875
+ - type: ndcg_at_1000
876
+ value: 44.945
877
+ - type: ndcg_at_3
878
+ value: 32.066
879
+ - type: ndcg_at_5
880
+ value: 34.29
881
+ - type: precision_at_1
882
+ value: 27.185
883
+ - type: precision_at_10
884
+ value: 6.752
885
+ - type: precision_at_100
886
+ value: 1.111
887
+ - type: precision_at_1000
888
+ value: 0.151
889
+ - type: precision_at_3
890
+ value: 15.290000000000001
891
+ - type: precision_at_5
892
+ value: 11.004999999999999
893
+ - type: recall_at_1
894
+ value: 22.181
895
+ - type: recall_at_10
896
+ value: 48.513
897
+ - type: recall_at_100
898
+ value: 73.418
899
+ - type: recall_at_1000
900
+ value: 90.306
901
+ - type: recall_at_3
902
+ value: 35.003
903
+ - type: recall_at_5
904
+ value: 40.876000000000005
905
+ - task:
906
+ type: Retrieval
907
+ dataset:
908
+ type: BeIR/cqadupstack
909
+ name: MTEB CQADupstackUnixRetrieval
910
+ config: default
911
+ split: test
912
+ revision: None
913
+ metrics:
914
+ - type: map_at_1
915
+ value: 33.934999999999995
916
+ - type: map_at_10
917
+ value: 44.727
918
+ - type: map_at_100
919
+ value: 44.727
920
+ - type: map_at_1000
921
+ value: 44.727
922
+ - type: map_at_3
923
+ value: 40.918
924
+ - type: map_at_5
925
+ value: 42.961
926
+ - type: mrr_at_1
927
+ value: 39.646
928
+ - type: mrr_at_10
929
+ value: 48.898
930
+ - type: mrr_at_100
931
+ value: 48.898
932
+ - type: mrr_at_1000
933
+ value: 48.898
934
+ - type: mrr_at_3
935
+ value: 45.896
936
+ - type: mrr_at_5
937
+ value: 47.514
938
+ - type: ndcg_at_1
939
+ value: 39.646
940
+ - type: ndcg_at_10
941
+ value: 50.817
942
+ - type: ndcg_at_100
943
+ value: 50.803
944
+ - type: ndcg_at_1000
945
+ value: 50.803
946
+ - type: ndcg_at_3
947
+ value: 44.507999999999996
948
+ - type: ndcg_at_5
949
+ value: 47.259
950
+ - type: precision_at_1
951
+ value: 39.646
952
+ - type: precision_at_10
953
+ value: 8.759
954
+ - type: precision_at_100
955
+ value: 0.876
956
+ - type: precision_at_1000
957
+ value: 0.08800000000000001
958
+ - type: precision_at_3
959
+ value: 20.274
960
+ - type: precision_at_5
961
+ value: 14.366000000000001
962
+ - type: recall_at_1
963
+ value: 33.934999999999995
964
+ - type: recall_at_10
965
+ value: 65.037
966
+ - type: recall_at_100
967
+ value: 65.037
968
+ - type: recall_at_1000
969
+ value: 65.037
970
+ - type: recall_at_3
971
+ value: 47.439
972
+ - type: recall_at_5
973
+ value: 54.567
974
+ - task:
975
+ type: Retrieval
976
+ dataset:
977
+ type: BeIR/cqadupstack
978
+ name: MTEB CQADupstackWebmastersRetrieval
979
+ config: default
980
+ split: test
981
+ revision: None
982
+ metrics:
983
+ - type: map_at_1
984
+ value: 32.058
985
+ - type: map_at_10
986
+ value: 43.137
987
+ - type: map_at_100
988
+ value: 43.137
989
+ - type: map_at_1000
990
+ value: 43.137
991
+ - type: map_at_3
992
+ value: 39.882
993
+ - type: map_at_5
994
+ value: 41.379
995
+ - type: mrr_at_1
996
+ value: 38.933
997
+ - type: mrr_at_10
998
+ value: 48.344
999
+ - type: mrr_at_100
1000
+ value: 48.344
1001
+ - type: mrr_at_1000
1002
+ value: 48.344
1003
+ - type: mrr_at_3
1004
+ value: 45.652
1005
+ - type: mrr_at_5
1006
+ value: 46.877
1007
+ - type: ndcg_at_1
1008
+ value: 38.933
1009
+ - type: ndcg_at_10
1010
+ value: 49.964
1011
+ - type: ndcg_at_100
1012
+ value: 49.242000000000004
1013
+ - type: ndcg_at_1000
1014
+ value: 49.222
1015
+ - type: ndcg_at_3
1016
+ value: 44.605
1017
+ - type: ndcg_at_5
1018
+ value: 46.501999999999995
1019
+ - type: precision_at_1
1020
+ value: 38.933
1021
+ - type: precision_at_10
1022
+ value: 9.427000000000001
1023
+ - type: precision_at_100
1024
+ value: 0.943
1025
+ - type: precision_at_1000
1026
+ value: 0.094
1027
+ - type: precision_at_3
1028
+ value: 20.685000000000002
1029
+ - type: precision_at_5
1030
+ value: 14.585
1031
+ - type: recall_at_1
1032
+ value: 32.058
1033
+ - type: recall_at_10
1034
+ value: 63.074
1035
+ - type: recall_at_100
1036
+ value: 63.074
1037
+ - type: recall_at_1000
1038
+ value: 63.074
1039
+ - type: recall_at_3
1040
+ value: 47.509
1041
+ - type: recall_at_5
1042
+ value: 52.455
1043
+ - task:
1044
+ type: Retrieval
1045
+ dataset:
1046
+ type: BeIR/cqadupstack
1047
+ name: MTEB CQADupstackWordpressRetrieval
1048
+ config: default
1049
+ split: test
1050
+ revision: None
1051
+ metrics:
1052
+ - type: map_at_1
1053
+ value: 26.029000000000003
1054
+ - type: map_at_10
1055
+ value: 34.646
1056
+ - type: map_at_100
1057
+ value: 34.646
1058
+ - type: map_at_1000
1059
+ value: 34.646
1060
+ - type: map_at_3
1061
+ value: 31.456
1062
+ - type: map_at_5
1063
+ value: 33.138
1064
+ - type: mrr_at_1
1065
+ value: 28.281
1066
+ - type: mrr_at_10
1067
+ value: 36.905
1068
+ - type: mrr_at_100
1069
+ value: 36.905
1070
+ - type: mrr_at_1000
1071
+ value: 36.905
1072
+ - type: mrr_at_3
1073
+ value: 34.011
1074
+ - type: mrr_at_5
1075
+ value: 35.638
1076
+ - type: ndcg_at_1
1077
+ value: 28.281
1078
+ - type: ndcg_at_10
1079
+ value: 40.159
1080
+ - type: ndcg_at_100
1081
+ value: 40.159
1082
+ - type: ndcg_at_1000
1083
+ value: 40.159
1084
+ - type: ndcg_at_3
1085
+ value: 33.995
1086
+ - type: ndcg_at_5
1087
+ value: 36.836999999999996
1088
+ - type: precision_at_1
1089
+ value: 28.281
1090
+ - type: precision_at_10
1091
+ value: 6.358999999999999
1092
+ - type: precision_at_100
1093
+ value: 0.636
1094
+ - type: precision_at_1000
1095
+ value: 0.064
1096
+ - type: precision_at_3
1097
+ value: 14.233
1098
+ - type: precision_at_5
1099
+ value: 10.314
1100
+ - type: recall_at_1
1101
+ value: 26.029000000000003
1102
+ - type: recall_at_10
1103
+ value: 55.08
1104
+ - type: recall_at_100
1105
+ value: 55.08
1106
+ - type: recall_at_1000
1107
+ value: 55.08
1108
+ - type: recall_at_3
1109
+ value: 38.487
1110
+ - type: recall_at_5
1111
+ value: 45.308
1112
+ - task:
1113
+ type: Retrieval
1114
+ dataset:
1115
+ type: climate-fever
1116
+ name: MTEB ClimateFEVER
1117
+ config: default
1118
+ split: test
1119
+ revision: None
1120
+ metrics:
1121
+ - type: map_at_1
1122
+ value: 12.842999999999998
1123
+ - type: map_at_10
1124
+ value: 22.101000000000003
1125
+ - type: map_at_100
1126
+ value: 24.319
1127
+ - type: map_at_1000
1128
+ value: 24.51
1129
+ - type: map_at_3
1130
+ value: 18.372
1131
+ - type: map_at_5
1132
+ value: 20.323
1133
+ - type: mrr_at_1
1134
+ value: 27.948
1135
+ - type: mrr_at_10
1136
+ value: 40.321
1137
+ - type: mrr_at_100
1138
+ value: 41.262
1139
+ - type: mrr_at_1000
1140
+ value: 41.297
1141
+ - type: mrr_at_3
1142
+ value: 36.558
1143
+ - type: mrr_at_5
1144
+ value: 38.824999999999996
1145
+ - type: ndcg_at_1
1146
+ value: 27.948
1147
+ - type: ndcg_at_10
1148
+ value: 30.906
1149
+ - type: ndcg_at_100
1150
+ value: 38.986
1151
+ - type: ndcg_at_1000
1152
+ value: 42.136
1153
+ - type: ndcg_at_3
1154
+ value: 24.911
1155
+ - type: ndcg_at_5
1156
+ value: 27.168999999999997
1157
+ - type: precision_at_1
1158
+ value: 27.948
1159
+ - type: precision_at_10
1160
+ value: 9.798
1161
+ - type: precision_at_100
1162
+ value: 1.8399999999999999
1163
+ - type: precision_at_1000
1164
+ value: 0.243
1165
+ - type: precision_at_3
1166
+ value: 18.328
1167
+ - type: precision_at_5
1168
+ value: 14.502
1169
+ - type: recall_at_1
1170
+ value: 12.842999999999998
1171
+ - type: recall_at_10
1172
+ value: 37.245
1173
+ - type: recall_at_100
1174
+ value: 64.769
1175
+ - type: recall_at_1000
1176
+ value: 82.055
1177
+ - type: recall_at_3
1178
+ value: 23.159
1179
+ - type: recall_at_5
1180
+ value: 29.113
1181
+ - task:
1182
+ type: Retrieval
1183
+ dataset:
1184
+ type: dbpedia-entity
1185
+ name: MTEB DBPedia
1186
+ config: default
1187
+ split: test
1188
+ revision: None
1189
+ metrics:
1190
+ - type: map_at_1
1191
+ value: 8.934000000000001
1192
+ - type: map_at_10
1193
+ value: 21.915000000000003
1194
+ - type: map_at_100
1195
+ value: 21.915000000000003
1196
+ - type: map_at_1000
1197
+ value: 21.915000000000003
1198
+ - type: map_at_3
1199
+ value: 14.623
1200
+ - type: map_at_5
1201
+ value: 17.841
1202
+ - type: mrr_at_1
1203
+ value: 71.25
1204
+ - type: mrr_at_10
1205
+ value: 78.994
1206
+ - type: mrr_at_100
1207
+ value: 78.994
1208
+ - type: mrr_at_1000
1209
+ value: 78.994
1210
+ - type: mrr_at_3
1211
+ value: 77.208
1212
+ - type: mrr_at_5
1213
+ value: 78.55799999999999
1214
+ - type: ndcg_at_1
1215
+ value: 60.62499999999999
1216
+ - type: ndcg_at_10
1217
+ value: 46.604
1218
+ - type: ndcg_at_100
1219
+ value: 35.653
1220
+ - type: ndcg_at_1000
1221
+ value: 35.531
1222
+ - type: ndcg_at_3
1223
+ value: 50.605
1224
+ - type: ndcg_at_5
1225
+ value: 48.730000000000004
1226
+ - type: precision_at_1
1227
+ value: 71.25
1228
+ - type: precision_at_10
1229
+ value: 37.75
1230
+ - type: precision_at_100
1231
+ value: 3.775
1232
+ - type: precision_at_1000
1233
+ value: 0.377
1234
+ - type: precision_at_3
1235
+ value: 54.417
1236
+ - type: precision_at_5
1237
+ value: 48.15
1238
+ - type: recall_at_1
1239
+ value: 8.934000000000001
1240
+ - type: recall_at_10
1241
+ value: 28.471000000000004
1242
+ - type: recall_at_100
1243
+ value: 28.471000000000004
1244
+ - type: recall_at_1000
1245
+ value: 28.471000000000004
1246
+ - type: recall_at_3
1247
+ value: 16.019
1248
+ - type: recall_at_5
1249
+ value: 21.410999999999998
1250
+ - task:
1251
+ type: Classification
1252
+ dataset:
1253
+ type: mteb/emotion
1254
+ name: MTEB EmotionClassification
1255
+ config: default
1256
+ split: test
1257
+ revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
1258
+ metrics:
1259
+ - type: accuracy
1260
+ value: 52.81
1261
+ - type: f1
1262
+ value: 47.987573380720114
1263
+ - task:
1264
+ type: Retrieval
1265
+ dataset:
1266
+ type: fever
1267
+ name: MTEB FEVER
1268
+ config: default
1269
+ split: test
1270
+ revision: None
1271
+ metrics:
1272
+ - type: map_at_1
1273
+ value: 66.81899999999999
1274
+ - type: map_at_10
1275
+ value: 78.034
1276
+ - type: map_at_100
1277
+ value: 78.034
1278
+ - type: map_at_1000
1279
+ value: 78.034
1280
+ - type: map_at_3
1281
+ value: 76.43100000000001
1282
+ - type: map_at_5
1283
+ value: 77.515
1284
+ - type: mrr_at_1
1285
+ value: 71.542
1286
+ - type: mrr_at_10
1287
+ value: 81.638
1288
+ - type: mrr_at_100
1289
+ value: 81.638
1290
+ - type: mrr_at_1000
1291
+ value: 81.638
1292
+ - type: mrr_at_3
1293
+ value: 80.403
1294
+ - type: mrr_at_5
1295
+ value: 81.256
1296
+ - type: ndcg_at_1
1297
+ value: 71.542
1298
+ - type: ndcg_at_10
1299
+ value: 82.742
1300
+ - type: ndcg_at_100
1301
+ value: 82.741
1302
+ - type: ndcg_at_1000
1303
+ value: 82.741
1304
+ - type: ndcg_at_3
1305
+ value: 80.039
1306
+ - type: ndcg_at_5
1307
+ value: 81.695
1308
+ - type: precision_at_1
1309
+ value: 71.542
1310
+ - type: precision_at_10
1311
+ value: 10.387
1312
+ - type: precision_at_100
1313
+ value: 1.039
1314
+ - type: precision_at_1000
1315
+ value: 0.104
1316
+ - type: precision_at_3
1317
+ value: 31.447999999999997
1318
+ - type: precision_at_5
1319
+ value: 19.91
1320
+ - type: recall_at_1
1321
+ value: 66.81899999999999
1322
+ - type: recall_at_10
1323
+ value: 93.372
1324
+ - type: recall_at_100
1325
+ value: 93.372
1326
+ - type: recall_at_1000
1327
+ value: 93.372
1328
+ - type: recall_at_3
1329
+ value: 86.33
1330
+ - type: recall_at_5
1331
+ value: 90.347
1332
+ - task:
1333
+ type: Retrieval
1334
+ dataset:
1335
+ type: fiqa
1336
+ name: MTEB FiQA2018
1337
+ config: default
1338
+ split: test
1339
+ revision: None
1340
+ metrics:
1341
+ - type: map_at_1
1342
+ value: 31.158
1343
+ - type: map_at_10
1344
+ value: 52.017
1345
+ - type: map_at_100
1346
+ value: 54.259
1347
+ - type: map_at_1000
1348
+ value: 54.367
1349
+ - type: map_at_3
1350
+ value: 45.738
1351
+ - type: map_at_5
1352
+ value: 49.283
1353
+ - type: mrr_at_1
1354
+ value: 57.87
1355
+ - type: mrr_at_10
1356
+ value: 66.215
1357
+ - type: mrr_at_100
1358
+ value: 66.735
1359
+ - type: mrr_at_1000
1360
+ value: 66.75
1361
+ - type: mrr_at_3
1362
+ value: 64.043
1363
+ - type: mrr_at_5
1364
+ value: 65.116
1365
+ - type: ndcg_at_1
1366
+ value: 57.87
1367
+ - type: ndcg_at_10
1368
+ value: 59.946999999999996
1369
+ - type: ndcg_at_100
1370
+ value: 66.31099999999999
1371
+ - type: ndcg_at_1000
1372
+ value: 67.75999999999999
1373
+ - type: ndcg_at_3
1374
+ value: 55.483000000000004
1375
+ - type: ndcg_at_5
1376
+ value: 56.891000000000005
1377
+ - type: precision_at_1
1378
+ value: 57.87
1379
+ - type: precision_at_10
1380
+ value: 16.497
1381
+ - type: precision_at_100
1382
+ value: 2.321
1383
+ - type: precision_at_1000
1384
+ value: 0.258
1385
+ - type: precision_at_3
1386
+ value: 37.14
1387
+ - type: precision_at_5
1388
+ value: 27.067999999999998
1389
+ - type: recall_at_1
1390
+ value: 31.158
1391
+ - type: recall_at_10
1392
+ value: 67.381
1393
+ - type: recall_at_100
1394
+ value: 89.464
1395
+ - type: recall_at_1000
1396
+ value: 97.989
1397
+ - type: recall_at_3
1398
+ value: 50.553000000000004
1399
+ - type: recall_at_5
1400
+ value: 57.824
1401
+ - task:
1402
+ type: Retrieval
1403
+ dataset:
1404
+ type: hotpotqa
1405
+ name: MTEB HotpotQA
1406
+ config: default
1407
+ split: test
1408
+ revision: None
1409
+ metrics:
1410
+ - type: map_at_1
1411
+ value: 42.073
1412
+ - type: map_at_10
1413
+ value: 72.418
1414
+ - type: map_at_100
1415
+ value: 73.175
1416
+ - type: map_at_1000
1417
+ value: 73.215
1418
+ - type: map_at_3
1419
+ value: 68.791
1420
+ - type: map_at_5
1421
+ value: 71.19
1422
+ - type: mrr_at_1
1423
+ value: 84.146
1424
+ - type: mrr_at_10
1425
+ value: 88.994
1426
+ - type: mrr_at_100
1427
+ value: 89.116
1428
+ - type: mrr_at_1000
1429
+ value: 89.12
1430
+ - type: mrr_at_3
1431
+ value: 88.373
1432
+ - type: mrr_at_5
1433
+ value: 88.82
1434
+ - type: ndcg_at_1
1435
+ value: 84.146
1436
+ - type: ndcg_at_10
1437
+ value: 79.404
1438
+ - type: ndcg_at_100
1439
+ value: 81.83200000000001
1440
+ - type: ndcg_at_1000
1441
+ value: 82.524
1442
+ - type: ndcg_at_3
1443
+ value: 74.595
1444
+ - type: ndcg_at_5
1445
+ value: 77.474
1446
+ - type: precision_at_1
1447
+ value: 84.146
1448
+ - type: precision_at_10
1449
+ value: 16.753999999999998
1450
+ - type: precision_at_100
1451
+ value: 1.8599999999999999
1452
+ - type: precision_at_1000
1453
+ value: 0.19499999999999998
1454
+ - type: precision_at_3
1455
+ value: 48.854
1456
+ - type: precision_at_5
1457
+ value: 31.579
1458
+ - type: recall_at_1
1459
+ value: 42.073
1460
+ - type: recall_at_10
1461
+ value: 83.768
1462
+ - type: recall_at_100
1463
+ value: 93.018
1464
+ - type: recall_at_1000
1465
+ value: 97.481
1466
+ - type: recall_at_3
1467
+ value: 73.282
1468
+ - type: recall_at_5
1469
+ value: 78.947
1470
+ - task:
1471
+ type: Classification
1472
+ dataset:
1473
+ type: mteb/imdb
1474
+ name: MTEB ImdbClassification
1475
+ config: default
1476
+ split: test
1477
+ revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
1478
+ metrics:
1479
+ - type: accuracy
1480
+ value: 94.9968
1481
+ - type: ap
1482
+ value: 92.93892195862824
1483
+ - type: f1
1484
+ value: 94.99327998213761
1485
+ - task:
1486
+ type: Retrieval
1487
+ dataset:
1488
+ type: msmarco
1489
+ name: MTEB MSMARCO
1490
+ config: default
1491
+ split: dev
1492
+ revision: None
1493
+ metrics:
1494
+ - type: map_at_1
1495
+ value: 21.698
1496
+ - type: map_at_10
1497
+ value: 34.585
1498
+ - type: map_at_100
1499
+ value: 35.782000000000004
1500
+ - type: map_at_1000
1501
+ value: 35.825
1502
+ - type: map_at_3
1503
+ value: 30.397999999999996
1504
+ - type: map_at_5
1505
+ value: 32.72
1506
+ - type: mrr_at_1
1507
+ value: 22.192
1508
+ - type: mrr_at_10
1509
+ value: 35.085
1510
+ - type: mrr_at_100
1511
+ value: 36.218
1512
+ - type: mrr_at_1000
1513
+ value: 36.256
1514
+ - type: mrr_at_3
1515
+ value: 30.986000000000004
1516
+ - type: mrr_at_5
1517
+ value: 33.268
1518
+ - type: ndcg_at_1
1519
+ value: 22.192
1520
+ - type: ndcg_at_10
1521
+ value: 41.957
1522
+ - type: ndcg_at_100
1523
+ value: 47.658
1524
+ - type: ndcg_at_1000
1525
+ value: 48.697
1526
+ - type: ndcg_at_3
1527
+ value: 33.433
1528
+ - type: ndcg_at_5
1529
+ value: 37.551
1530
+ - type: precision_at_1
1531
+ value: 22.192
1532
+ - type: precision_at_10
1533
+ value: 6.781
1534
+ - type: precision_at_100
1535
+ value: 0.963
1536
+ - type: precision_at_1000
1537
+ value: 0.105
1538
+ - type: precision_at_3
1539
+ value: 14.365
1540
+ - type: precision_at_5
1541
+ value: 10.713000000000001
1542
+ - type: recall_at_1
1543
+ value: 21.698
1544
+ - type: recall_at_10
1545
+ value: 64.79
1546
+ - type: recall_at_100
1547
+ value: 91.071
1548
+ - type: recall_at_1000
1549
+ value: 98.883
1550
+ - type: recall_at_3
1551
+ value: 41.611
1552
+ - type: recall_at_5
1553
+ value: 51.459999999999994
1554
+ - task:
1555
+ type: Classification
1556
+ dataset:
1557
+ type: mteb/mtop_domain
1558
+ name: MTEB MTOPDomainClassification (en)
1559
+ config: en
1560
+ split: test
1561
+ revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
1562
+ metrics:
1563
+ - type: accuracy
1564
+ value: 96.15823073415413
1565
+ - type: f1
1566
+ value: 96.00362034963248
1567
+ - task:
1568
+ type: Classification
1569
+ dataset:
1570
+ type: mteb/mtop_intent
1571
+ name: MTEB MTOPIntentClassification (en)
1572
+ config: en
1573
+ split: test
1574
+ revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
1575
+ metrics:
1576
+ - type: accuracy
1577
+ value: 87.12722298221614
1578
+ - type: f1
1579
+ value: 70.46888967516227
1580
+ - task:
1581
+ type: Classification
1582
+ dataset:
1583
+ type: mteb/amazon_massive_intent
1584
+ name: MTEB MassiveIntentClassification (en)
1585
+ config: en
1586
+ split: test
1587
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
1588
+ metrics:
1589
+ - type: accuracy
1590
+ value: 80.77673167451245
1591
+ - type: f1
1592
+ value: 77.60202561132175
1593
+ - task:
1594
+ type: Classification
1595
+ dataset:
1596
+ type: mteb/amazon_massive_scenario
1597
+ name: MTEB MassiveScenarioClassification (en)
1598
+ config: en
1599
+ split: test
1600
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
1601
+ metrics:
1602
+ - type: accuracy
1603
+ value: 82.09145931405514
1604
+ - type: f1
1605
+ value: 81.7701921473406
1606
+ - task:
1607
+ type: Clustering
1608
+ dataset:
1609
+ type: mteb/medrxiv-clustering-p2p
1610
+ name: MTEB MedrxivClusteringP2P
1611
+ config: default
1612
+ split: test
1613
+ revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
1614
+ metrics:
1615
+ - type: v_measure
1616
+ value: 36.52153488185864
1617
+ - task:
1618
+ type: Clustering
1619
+ dataset:
1620
+ type: mteb/medrxiv-clustering-s2s
1621
+ name: MTEB MedrxivClusteringS2S
1622
+ config: default
1623
+ split: test
1624
+ revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
1625
+ metrics:
1626
+ - type: v_measure
1627
+ value: 36.80090398444147
1628
+ - task:
1629
+ type: Reranking
1630
+ dataset:
1631
+ type: mteb/mind_small
1632
+ name: MTEB MindSmallReranking
1633
+ config: default
1634
+ split: test
1635
+ revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
1636
+ metrics:
1637
+ - type: map
1638
+ value: 31.807141746058605
1639
+ - type: mrr
1640
+ value: 32.85025611455029
1641
+ - task:
1642
+ type: Retrieval
1643
+ dataset:
1644
+ type: nfcorpus
1645
+ name: MTEB NFCorpus
1646
+ config: default
1647
+ split: test
1648
+ revision: None
1649
+ metrics:
1650
+ - type: map_at_1
1651
+ value: 6.920999999999999
1652
+ - type: map_at_10
1653
+ value: 16.049
1654
+ - type: map_at_100
1655
+ value: 16.049
1656
+ - type: map_at_1000
1657
+ value: 16.049
1658
+ - type: map_at_3
1659
+ value: 11.865
1660
+ - type: map_at_5
1661
+ value: 13.657
1662
+ - type: mrr_at_1
1663
+ value: 53.87
1664
+ - type: mrr_at_10
1665
+ value: 62.291
1666
+ - type: mrr_at_100
1667
+ value: 62.291
1668
+ - type: mrr_at_1000
1669
+ value: 62.291
1670
+ - type: mrr_at_3
1671
+ value: 60.681
1672
+ - type: mrr_at_5
1673
+ value: 61.61
1674
+ - type: ndcg_at_1
1675
+ value: 51.23799999999999
1676
+ - type: ndcg_at_10
1677
+ value: 40.892
1678
+ - type: ndcg_at_100
1679
+ value: 26.951999999999998
1680
+ - type: ndcg_at_1000
1681
+ value: 26.474999999999998
1682
+ - type: ndcg_at_3
1683
+ value: 46.821
1684
+ - type: ndcg_at_5
1685
+ value: 44.333
1686
+ - type: precision_at_1
1687
+ value: 53.251000000000005
1688
+ - type: precision_at_10
1689
+ value: 30.124000000000002
1690
+ - type: precision_at_100
1691
+ value: 3.012
1692
+ - type: precision_at_1000
1693
+ value: 0.301
1694
+ - type: precision_at_3
1695
+ value: 43.55
1696
+ - type: precision_at_5
1697
+ value: 38.266
1698
+ - type: recall_at_1
1699
+ value: 6.920999999999999
1700
+ - type: recall_at_10
1701
+ value: 20.852
1702
+ - type: recall_at_100
1703
+ value: 20.852
1704
+ - type: recall_at_1000
1705
+ value: 20.852
1706
+ - type: recall_at_3
1707
+ value: 13.628000000000002
1708
+ - type: recall_at_5
1709
+ value: 16.273
1710
+ - task:
1711
+ type: Retrieval
1712
+ dataset:
1713
+ type: nq
1714
+ name: MTEB NQ
1715
+ config: default
1716
+ split: test
1717
+ revision: None
1718
+ metrics:
1719
+ - type: map_at_1
1720
+ value: 46.827999999999996
1721
+ - type: map_at_10
1722
+ value: 63.434000000000005
1723
+ - type: map_at_100
1724
+ value: 63.434000000000005
1725
+ - type: map_at_1000
1726
+ value: 63.434000000000005
1727
+ - type: map_at_3
1728
+ value: 59.794000000000004
1729
+ - type: map_at_5
1730
+ value: 62.08
1731
+ - type: mrr_at_1
1732
+ value: 52.288999999999994
1733
+ - type: mrr_at_10
1734
+ value: 65.95
1735
+ - type: mrr_at_100
1736
+ value: 65.95
1737
+ - type: mrr_at_1000
1738
+ value: 65.95
1739
+ - type: mrr_at_3
1740
+ value: 63.413
1741
+ - type: mrr_at_5
1742
+ value: 65.08
1743
+ - type: ndcg_at_1
1744
+ value: 52.288999999999994
1745
+ - type: ndcg_at_10
1746
+ value: 70.301
1747
+ - type: ndcg_at_100
1748
+ value: 70.301
1749
+ - type: ndcg_at_1000
1750
+ value: 70.301
1751
+ - type: ndcg_at_3
1752
+ value: 63.979
1753
+ - type: ndcg_at_5
1754
+ value: 67.582
1755
+ - type: precision_at_1
1756
+ value: 52.288999999999994
1757
+ - type: precision_at_10
1758
+ value: 10.576
1759
+ - type: precision_at_100
1760
+ value: 1.058
1761
+ - type: precision_at_1000
1762
+ value: 0.106
1763
+ - type: precision_at_3
1764
+ value: 28.177000000000003
1765
+ - type: precision_at_5
1766
+ value: 19.073
1767
+ - type: recall_at_1
1768
+ value: 46.827999999999996
1769
+ - type: recall_at_10
1770
+ value: 88.236
1771
+ - type: recall_at_100
1772
+ value: 88.236
1773
+ - type: recall_at_1000
1774
+ value: 88.236
1775
+ - type: recall_at_3
1776
+ value: 72.371
1777
+ - type: recall_at_5
1778
+ value: 80.56
1779
+ - task:
1780
+ type: Retrieval
1781
+ dataset:
1782
+ type: quora
1783
+ name: MTEB QuoraRetrieval
1784
+ config: default
1785
+ split: test
1786
+ revision: None
1787
+ metrics:
1788
+ - type: map_at_1
1789
+ value: 71.652
1790
+ - type: map_at_10
1791
+ value: 85.953
1792
+ - type: map_at_100
1793
+ value: 85.953
1794
+ - type: map_at_1000
1795
+ value: 85.953
1796
+ - type: map_at_3
1797
+ value: 83.05399999999999
1798
+ - type: map_at_5
1799
+ value: 84.89
1800
+ - type: mrr_at_1
1801
+ value: 82.42
1802
+ - type: mrr_at_10
1803
+ value: 88.473
1804
+ - type: mrr_at_100
1805
+ value: 88.473
1806
+ - type: mrr_at_1000
1807
+ value: 88.473
1808
+ - type: mrr_at_3
1809
+ value: 87.592
1810
+ - type: mrr_at_5
1811
+ value: 88.211
1812
+ - type: ndcg_at_1
1813
+ value: 82.44
1814
+ - type: ndcg_at_10
1815
+ value: 89.467
1816
+ - type: ndcg_at_100
1817
+ value: 89.33
1818
+ - type: ndcg_at_1000
1819
+ value: 89.33
1820
+ - type: ndcg_at_3
1821
+ value: 86.822
1822
+ - type: ndcg_at_5
1823
+ value: 88.307
1824
+ - type: precision_at_1
1825
+ value: 82.44
1826
+ - type: precision_at_10
1827
+ value: 13.616
1828
+ - type: precision_at_100
1829
+ value: 1.362
1830
+ - type: precision_at_1000
1831
+ value: 0.136
1832
+ - type: precision_at_3
1833
+ value: 38.117000000000004
1834
+ - type: precision_at_5
1835
+ value: 25.05
1836
+ - type: recall_at_1
1837
+ value: 71.652
1838
+ - type: recall_at_10
1839
+ value: 96.224
1840
+ - type: recall_at_100
1841
+ value: 96.224
1842
+ - type: recall_at_1000
1843
+ value: 96.224
1844
+ - type: recall_at_3
1845
+ value: 88.571
1846
+ - type: recall_at_5
1847
+ value: 92.812
1848
+ - task:
1849
+ type: Clustering
1850
+ dataset:
1851
+ type: mteb/reddit-clustering
1852
+ name: MTEB RedditClustering
1853
+ config: default
1854
+ split: test
1855
+ revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
1856
+ metrics:
1857
+ - type: v_measure
1858
+ value: 61.295010338050474
1859
+ - task:
1860
+ type: Clustering
1861
+ dataset:
1862
+ type: mteb/reddit-clustering-p2p
1863
+ name: MTEB RedditClusteringP2P
1864
+ config: default
1865
+ split: test
1866
+ revision: 282350215ef01743dc01b456c7f5241fa8937f16
1867
+ metrics:
1868
+ - type: v_measure
1869
+ value: 67.26380819328142
1870
+ - task:
1871
+ type: Retrieval
1872
+ dataset:
1873
+ type: scidocs
1874
+ name: MTEB SCIDOCS
1875
+ config: default
1876
+ split: test
1877
+ revision: None
1878
+ metrics:
1879
+ - type: map_at_1
1880
+ value: 5.683
1881
+ - type: map_at_10
1882
+ value: 14.924999999999999
1883
+ - type: map_at_100
1884
+ value: 17.532
1885
+ - type: map_at_1000
1886
+ value: 17.875
1887
+ - type: map_at_3
1888
+ value: 10.392
1889
+ - type: map_at_5
1890
+ value: 12.592
1891
+ - type: mrr_at_1
1892
+ value: 28.000000000000004
1893
+ - type: mrr_at_10
1894
+ value: 39.951
1895
+ - type: mrr_at_100
1896
+ value: 41.025
1897
+ - type: mrr_at_1000
1898
+ value: 41.056
1899
+ - type: mrr_at_3
1900
+ value: 36.317
1901
+ - type: mrr_at_5
1902
+ value: 38.412
1903
+ - type: ndcg_at_1
1904
+ value: 28.000000000000004
1905
+ - type: ndcg_at_10
1906
+ value: 24.410999999999998
1907
+ - type: ndcg_at_100
1908
+ value: 33.79
1909
+ - type: ndcg_at_1000
1910
+ value: 39.035
1911
+ - type: ndcg_at_3
1912
+ value: 22.845
1913
+ - type: ndcg_at_5
1914
+ value: 20.080000000000002
1915
+ - type: precision_at_1
1916
+ value: 28.000000000000004
1917
+ - type: precision_at_10
1918
+ value: 12.790000000000001
1919
+ - type: precision_at_100
1920
+ value: 2.633
1921
+ - type: precision_at_1000
1922
+ value: 0.388
1923
+ - type: precision_at_3
1924
+ value: 21.367
1925
+ - type: precision_at_5
1926
+ value: 17.7
1927
+ - type: recall_at_1
1928
+ value: 5.683
1929
+ - type: recall_at_10
1930
+ value: 25.91
1931
+ - type: recall_at_100
1932
+ value: 53.443
1933
+ - type: recall_at_1000
1934
+ value: 78.73
1935
+ - type: recall_at_3
1936
+ value: 13.003
1937
+ - type: recall_at_5
1938
+ value: 17.932000000000002
1939
+ - task:
1940
+ type: STS
1941
+ dataset:
1942
+ type: mteb/sickr-sts
1943
+ name: MTEB SICK-R
1944
+ config: default
1945
+ split: test
1946
+ revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
1947
+ metrics:
1948
+ - type: cos_sim_pearson
1949
+ value: 84.677978681023
1950
+ - type: cos_sim_spearman
1951
+ value: 83.13093441058189
1952
+ - type: euclidean_pearson
1953
+ value: 83.35535759341572
1954
+ - type: euclidean_spearman
1955
+ value: 83.42583744219611
1956
+ - type: manhattan_pearson
1957
+ value: 83.2243124045889
1958
+ - type: manhattan_spearman
1959
+ value: 83.39801618652632
1960
+ - task:
1961
+ type: STS
1962
+ dataset:
1963
+ type: mteb/sts12-sts
1964
+ name: MTEB STS12
1965
+ config: default
1966
+ split: test
1967
+ revision: a0d554a64d88156834ff5ae9920b964011b16384
1968
+ metrics:
1969
+ - type: cos_sim_pearson
1970
+ value: 81.68960206569666
1971
+ - type: cos_sim_spearman
1972
+ value: 77.3368966488535
1973
+ - type: euclidean_pearson
1974
+ value: 77.62828980560303
1975
+ - type: euclidean_spearman
1976
+ value: 76.77951481444651
1977
+ - type: manhattan_pearson
1978
+ value: 77.88637240839041
1979
+ - type: manhattan_spearman
1980
+ value: 77.22157841466188
1981
+ - task:
1982
+ type: STS
1983
+ dataset:
1984
+ type: mteb/sts13-sts
1985
+ name: MTEB STS13
1986
+ config: default
1987
+ split: test
1988
+ revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
1989
+ metrics:
1990
+ - type: cos_sim_pearson
1991
+ value: 84.18745821650724
1992
+ - type: cos_sim_spearman
1993
+ value: 85.04423285574542
1994
+ - type: euclidean_pearson
1995
+ value: 85.46604816931023
1996
+ - type: euclidean_spearman
1997
+ value: 85.5230593932974
1998
+ - type: manhattan_pearson
1999
+ value: 85.57912805986261
2000
+ - type: manhattan_spearman
2001
+ value: 85.65955905111873
2002
+ - task:
2003
+ type: STS
2004
+ dataset:
2005
+ type: mteb/sts14-sts
2006
+ name: MTEB STS14
2007
+ config: default
2008
+ split: test
2009
+ revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
2010
+ metrics:
2011
+ - type: cos_sim_pearson
2012
+ value: 83.6715333300355
2013
+ - type: cos_sim_spearman
2014
+ value: 82.9058522514908
2015
+ - type: euclidean_pearson
2016
+ value: 83.9640357424214
2017
+ - type: euclidean_spearman
2018
+ value: 83.60415457472637
2019
+ - type: manhattan_pearson
2020
+ value: 84.05621005853469
2021
+ - type: manhattan_spearman
2022
+ value: 83.87077724707746
2023
+ - task:
2024
+ type: STS
2025
+ dataset:
2026
+ type: mteb/sts15-sts
2027
+ name: MTEB STS15
2028
+ config: default
2029
+ split: test
2030
+ revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
2031
+ metrics:
2032
+ - type: cos_sim_pearson
2033
+ value: 87.82422928098886
2034
+ - type: cos_sim_spearman
2035
+ value: 88.12660311894628
2036
+ - type: euclidean_pearson
2037
+ value: 87.50974805056555
2038
+ - type: euclidean_spearman
2039
+ value: 87.91957275596677
2040
+ - type: manhattan_pearson
2041
+ value: 87.74119404878883
2042
+ - type: manhattan_spearman
2043
+ value: 88.2808922165719
2044
+ - task:
2045
+ type: STS
2046
+ dataset:
2047
+ type: mteb/sts16-sts
2048
+ name: MTEB STS16
2049
+ config: default
2050
+ split: test
2051
+ revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
2052
+ metrics:
2053
+ - type: cos_sim_pearson
2054
+ value: 84.80605838552093
2055
+ - type: cos_sim_spearman
2056
+ value: 86.24123388765678
2057
+ - type: euclidean_pearson
2058
+ value: 85.32648347339814
2059
+ - type: euclidean_spearman
2060
+ value: 85.60046671950158
2061
+ - type: manhattan_pearson
2062
+ value: 85.53800168487811
2063
+ - type: manhattan_spearman
2064
+ value: 85.89542420480763
2065
+ - task:
2066
+ type: STS
2067
+ dataset:
2068
+ type: mteb/sts17-crosslingual-sts
2069
+ name: MTEB STS17 (en-en)
2070
+ config: en-en
2071
+ split: test
2072
+ revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
2073
+ metrics:
2074
+ - type: cos_sim_pearson
2075
+ value: 89.87540978988132
2076
+ - type: cos_sim_spearman
2077
+ value: 90.12715295099461
2078
+ - type: euclidean_pearson
2079
+ value: 91.61085993525275
2080
+ - type: euclidean_spearman
2081
+ value: 91.31835942311758
2082
+ - type: manhattan_pearson
2083
+ value: 91.57500202032934
2084
+ - type: manhattan_spearman
2085
+ value: 91.1790925526635
2086
+ - task:
2087
+ type: STS
2088
+ dataset:
2089
+ type: mteb/sts22-crosslingual-sts
2090
+ name: MTEB STS22 (en)
2091
+ config: en
2092
+ split: test
2093
+ revision: eea2b4fe26a775864c896887d910b76a8098ad3f
2094
+ metrics:
2095
+ - type: cos_sim_pearson
2096
+ value: 69.87136205329556
2097
+ - type: cos_sim_spearman
2098
+ value: 68.6253154635078
2099
+ - type: euclidean_pearson
2100
+ value: 68.91536015034222
2101
+ - type: euclidean_spearman
2102
+ value: 67.63744649352542
2103
+ - type: manhattan_pearson
2104
+ value: 69.2000713045275
2105
+ - type: manhattan_spearman
2106
+ value: 68.16002901587316
2107
+ - task:
2108
+ type: STS
2109
+ dataset:
2110
+ type: mteb/stsbenchmark-sts
2111
+ name: MTEB STSBenchmark
2112
+ config: default
2113
+ split: test
2114
+ revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
2115
+ metrics:
2116
+ - type: cos_sim_pearson
2117
+ value: 85.21849551039082
2118
+ - type: cos_sim_spearman
2119
+ value: 85.6392959372461
2120
+ - type: euclidean_pearson
2121
+ value: 85.92050852609488
2122
+ - type: euclidean_spearman
2123
+ value: 85.97205649009734
2124
+ - type: manhattan_pearson
2125
+ value: 86.1031154802254
2126
+ - type: manhattan_spearman
2127
+ value: 86.26791155517466
2128
+ - task:
2129
+ type: Reranking
2130
+ dataset:
2131
+ type: mteb/scidocs-reranking
2132
+ name: MTEB SciDocsRR
2133
+ config: default
2134
+ split: test
2135
+ revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
2136
+ metrics:
2137
+ - type: map
2138
+ value: 86.83953958636627
2139
+ - type: mrr
2140
+ value: 96.71167612344082
2141
+ - task:
2142
+ type: Retrieval
2143
+ dataset:
2144
+ type: scifact
2145
+ name: MTEB SciFact
2146
+ config: default
2147
+ split: test
2148
+ revision: None
2149
+ metrics:
2150
+ - type: map_at_1
2151
+ value: 64.994
2152
+ - type: map_at_10
2153
+ value: 74.763
2154
+ - type: map_at_100
2155
+ value: 75.127
2156
+ - type: map_at_1000
2157
+ value: 75.143
2158
+ - type: map_at_3
2159
+ value: 71.824
2160
+ - type: map_at_5
2161
+ value: 73.71
2162
+ - type: mrr_at_1
2163
+ value: 68.333
2164
+ - type: mrr_at_10
2165
+ value: 75.749
2166
+ - type: mrr_at_100
2167
+ value: 75.922
2168
+ - type: mrr_at_1000
2169
+ value: 75.938
2170
+ - type: mrr_at_3
2171
+ value: 73.556
2172
+ - type: mrr_at_5
2173
+ value: 74.739
2174
+ - type: ndcg_at_1
2175
+ value: 68.333
2176
+ - type: ndcg_at_10
2177
+ value: 79.174
2178
+ - type: ndcg_at_100
2179
+ value: 80.41
2180
+ - type: ndcg_at_1000
2181
+ value: 80.804
2182
+ - type: ndcg_at_3
2183
+ value: 74.361
2184
+ - type: ndcg_at_5
2185
+ value: 76.861
2186
+ - type: precision_at_1
2187
+ value: 68.333
2188
+ - type: precision_at_10
2189
+ value: 10.333
2190
+ - type: precision_at_100
2191
+ value: 1.0999999999999999
2192
+ - type: precision_at_1000
2193
+ value: 0.11299999999999999
2194
+ - type: precision_at_3
2195
+ value: 28.778
2196
+ - type: precision_at_5
2197
+ value: 19.067
2198
+ - type: recall_at_1
2199
+ value: 64.994
2200
+ - type: recall_at_10
2201
+ value: 91.822
2202
+ - type: recall_at_100
2203
+ value: 97.0
2204
+ - type: recall_at_1000
2205
+ value: 100.0
2206
+ - type: recall_at_3
2207
+ value: 78.878
2208
+ - type: recall_at_5
2209
+ value: 85.172
2210
+ - task:
2211
+ type: PairClassification
2212
+ dataset:
2213
+ type: mteb/sprintduplicatequestions-pairclassification
2214
+ name: MTEB SprintDuplicateQuestions
2215
+ config: default
2216
+ split: test
2217
+ revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
2218
+ metrics:
2219
+ - type: cos_sim_accuracy
2220
+ value: 99.72079207920792
2221
+ - type: cos_sim_ap
2222
+ value: 93.00265215525152
2223
+ - type: cos_sim_f1
2224
+ value: 85.06596306068602
2225
+ - type: cos_sim_precision
2226
+ value: 90.05586592178771
2227
+ - type: cos_sim_recall
2228
+ value: 80.60000000000001
2229
+ - type: dot_accuracy
2230
+ value: 99.66039603960397
2231
+ - type: dot_ap
2232
+ value: 91.22371407479089
2233
+ - type: dot_f1
2234
+ value: 82.34693877551021
2235
+ - type: dot_precision
2236
+ value: 84.0625
2237
+ - type: dot_recall
2238
+ value: 80.7
2239
+ - type: euclidean_accuracy
2240
+ value: 99.71881188118812
2241
+ - type: euclidean_ap
2242
+ value: 92.88449963304728
2243
+ - type: euclidean_f1
2244
+ value: 85.19480519480518
2245
+ - type: euclidean_precision
2246
+ value: 88.64864864864866
2247
+ - type: euclidean_recall
2248
+ value: 82.0
2249
+ - type: manhattan_accuracy
2250
+ value: 99.73267326732673
2251
+ - type: manhattan_ap
2252
+ value: 93.23055393056883
2253
+ - type: manhattan_f1
2254
+ value: 85.88957055214725
2255
+ - type: manhattan_precision
2256
+ value: 87.86610878661088
2257
+ - type: manhattan_recall
2258
+ value: 84.0
2259
+ - type: max_accuracy
2260
+ value: 99.73267326732673
2261
+ - type: max_ap
2262
+ value: 93.23055393056883
2263
+ - type: max_f1
2264
+ value: 85.88957055214725
2265
+ - task:
2266
+ type: Clustering
2267
+ dataset:
2268
+ type: mteb/stackexchange-clustering
2269
+ name: MTEB StackExchangeClustering
2270
+ config: default
2271
+ split: test
2272
+ revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
2273
+ metrics:
2274
+ - type: v_measure
2275
+ value: 77.3305735900358
2276
+ - task:
2277
+ type: Clustering
2278
+ dataset:
2279
+ type: mteb/stackexchange-clustering-p2p
2280
+ name: MTEB StackExchangeClusteringP2P
2281
+ config: default
2282
+ split: test
2283
+ revision: 815ca46b2622cec33ccafc3735d572c266efdb44
2284
+ metrics:
2285
+ - type: v_measure
2286
+ value: 41.32967136540674
2287
+ - task:
2288
+ type: Reranking
2289
+ dataset:
2290
+ type: mteb/stackoverflowdupquestions-reranking
2291
+ name: MTEB StackOverflowDupQuestions
2292
+ config: default
2293
+ split: test
2294
+ revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
2295
+ metrics:
2296
+ - type: map
2297
+ value: 55.95514866379359
2298
+ - type: mrr
2299
+ value: 56.95423245055598
2300
+ - task:
2301
+ type: Summarization
2302
+ dataset:
2303
+ type: mteb/summeval
2304
+ name: MTEB SummEval
2305
+ config: default
2306
+ split: test
2307
+ revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
2308
+ metrics:
2309
+ - type: cos_sim_pearson
2310
+ value: 30.783007208997144
2311
+ - type: cos_sim_spearman
2312
+ value: 30.373444721540533
2313
+ - type: dot_pearson
2314
+ value: 29.210604111143905
2315
+ - type: dot_spearman
2316
+ value: 29.98809758085659
2317
+ - task:
2318
+ type: Retrieval
2319
+ dataset:
2320
+ type: trec-covid
2321
+ name: MTEB TRECCOVID
2322
+ config: default
2323
+ split: test
2324
+ revision: None
2325
+ metrics:
2326
+ - type: map_at_1
2327
+ value: 0.234
2328
+ - type: map_at_10
2329
+ value: 1.894
2330
+ - type: map_at_100
2331
+ value: 1.894
2332
+ - type: map_at_1000
2333
+ value: 1.894
2334
+ - type: map_at_3
2335
+ value: 0.636
2336
+ - type: map_at_5
2337
+ value: 1.0
2338
+ - type: mrr_at_1
2339
+ value: 88.0
2340
+ - type: mrr_at_10
2341
+ value: 93.667
2342
+ - type: mrr_at_100
2343
+ value: 93.667
2344
+ - type: mrr_at_1000
2345
+ value: 93.667
2346
+ - type: mrr_at_3
2347
+ value: 93.667
2348
+ - type: mrr_at_5
2349
+ value: 93.667
2350
+ - type: ndcg_at_1
2351
+ value: 85.0
2352
+ - type: ndcg_at_10
2353
+ value: 74.798
2354
+ - type: ndcg_at_100
2355
+ value: 16.462
2356
+ - type: ndcg_at_1000
2357
+ value: 7.0889999999999995
2358
+ - type: ndcg_at_3
2359
+ value: 80.754
2360
+ - type: ndcg_at_5
2361
+ value: 77.319
2362
+ - type: precision_at_1
2363
+ value: 88.0
2364
+ - type: precision_at_10
2365
+ value: 78.0
2366
+ - type: precision_at_100
2367
+ value: 7.8
2368
+ - type: precision_at_1000
2369
+ value: 0.7799999999999999
2370
+ - type: precision_at_3
2371
+ value: 83.333
2372
+ - type: precision_at_5
2373
+ value: 80.80000000000001
2374
+ - type: recall_at_1
2375
+ value: 0.234
2376
+ - type: recall_at_10
2377
+ value: 2.093
2378
+ - type: recall_at_100
2379
+ value: 2.093
2380
+ - type: recall_at_1000
2381
+ value: 2.093
2382
+ - type: recall_at_3
2383
+ value: 0.662
2384
+ - type: recall_at_5
2385
+ value: 1.0739999999999998
2386
+ - task:
2387
+ type: Retrieval
2388
+ dataset:
2389
+ type: webis-touche2020
2390
+ name: MTEB Touche2020
2391
+ config: default
2392
+ split: test
2393
+ revision: None
2394
+ metrics:
2395
+ - type: map_at_1
2396
+ value: 2.703
2397
+ - type: map_at_10
2398
+ value: 10.866000000000001
2399
+ - type: map_at_100
2400
+ value: 10.866000000000001
2401
+ - type: map_at_1000
2402
+ value: 10.866000000000001
2403
+ - type: map_at_3
2404
+ value: 5.909
2405
+ - type: map_at_5
2406
+ value: 7.35
2407
+ - type: mrr_at_1
2408
+ value: 36.735
2409
+ - type: mrr_at_10
2410
+ value: 53.583000000000006
2411
+ - type: mrr_at_100
2412
+ value: 53.583000000000006
2413
+ - type: mrr_at_1000
2414
+ value: 53.583000000000006
2415
+ - type: mrr_at_3
2416
+ value: 49.32
2417
+ - type: mrr_at_5
2418
+ value: 51.769
2419
+ - type: ndcg_at_1
2420
+ value: 34.694
2421
+ - type: ndcg_at_10
2422
+ value: 27.926000000000002
2423
+ - type: ndcg_at_100
2424
+ value: 22.701
2425
+ - type: ndcg_at_1000
2426
+ value: 22.701
2427
+ - type: ndcg_at_3
2428
+ value: 32.073
2429
+ - type: ndcg_at_5
2430
+ value: 28.327999999999996
2431
+ - type: precision_at_1
2432
+ value: 36.735
2433
+ - type: precision_at_10
2434
+ value: 24.694
2435
+ - type: precision_at_100
2436
+ value: 2.469
2437
+ - type: precision_at_1000
2438
+ value: 0.247
2439
+ - type: precision_at_3
2440
+ value: 31.973000000000003
2441
+ - type: precision_at_5
2442
+ value: 26.939
2443
+ - type: recall_at_1
2444
+ value: 2.703
2445
+ - type: recall_at_10
2446
+ value: 17.702
2447
+ - type: recall_at_100
2448
+ value: 17.702
2449
+ - type: recall_at_1000
2450
+ value: 17.702
2451
+ - type: recall_at_3
2452
+ value: 7.208
2453
+ - type: recall_at_5
2454
+ value: 9.748999999999999
2455
+ - task:
2456
+ type: Classification
2457
+ dataset:
2458
+ type: mteb/toxic_conversations_50k
2459
+ name: MTEB ToxicConversationsClassification
2460
+ config: default
2461
+ split: test
2462
+ revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
2463
+ metrics:
2464
+ - type: accuracy
2465
+ value: 70.79960000000001
2466
+ - type: ap
2467
+ value: 15.467565415565815
2468
+ - type: f1
2469
+ value: 55.28639823443618
2470
+ - task:
2471
+ type: Classification
2472
+ dataset:
2473
+ type: mteb/tweet_sentiment_extraction
2474
+ name: MTEB TweetSentimentExtractionClassification
2475
+ config: default
2476
+ split: test
2477
+ revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
2478
+ metrics:
2479
+ - type: accuracy
2480
+ value: 64.7792869269949
2481
+ - type: f1
2482
+ value: 65.08597154774318
2483
+ - task:
2484
+ type: Clustering
2485
+ dataset:
2486
+ type: mteb/twentynewsgroups-clustering
2487
+ name: MTEB TwentyNewsgroupsClustering
2488
+ config: default
2489
+ split: test
2490
+ revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
2491
+ metrics:
2492
+ - type: v_measure
2493
+ value: 55.70352297774293
2494
+ - task:
2495
+ type: PairClassification
2496
+ dataset:
2497
+ type: mteb/twittersemeval2015-pairclassification
2498
+ name: MTEB TwitterSemEval2015
2499
+ config: default
2500
+ split: test
2501
+ revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
2502
+ metrics:
2503
+ - type: cos_sim_accuracy
2504
+ value: 88.27561542588067
2505
+ - type: cos_sim_ap
2506
+ value: 81.08262141256193
2507
+ - type: cos_sim_f1
2508
+ value: 73.82341501361338
2509
+ - type: cos_sim_precision
2510
+ value: 72.5720112159062
2511
+ - type: cos_sim_recall
2512
+ value: 75.11873350923483
2513
+ - type: dot_accuracy
2514
+ value: 86.66030875603504
2515
+ - type: dot_ap
2516
+ value: 76.6052349228621
2517
+ - type: dot_f1
2518
+ value: 70.13897280966768
2519
+ - type: dot_precision
2520
+ value: 64.70457079152732
2521
+ - type: dot_recall
2522
+ value: 76.56992084432717
2523
+ - type: euclidean_accuracy
2524
+ value: 88.37098408535495
2525
+ - type: euclidean_ap
2526
+ value: 81.12515230092113
2527
+ - type: euclidean_f1
2528
+ value: 74.10338225909379
2529
+ - type: euclidean_precision
2530
+ value: 71.76761433868974
2531
+ - type: euclidean_recall
2532
+ value: 76.59630606860158
2533
+ - type: manhattan_accuracy
2534
+ value: 88.34118137926924
2535
+ - type: manhattan_ap
2536
+ value: 80.95751834536561
2537
+ - type: manhattan_f1
2538
+ value: 73.9119496855346
2539
+ - type: manhattan_precision
2540
+ value: 70.625
2541
+ - type: manhattan_recall
2542
+ value: 77.5197889182058
2543
+ - type: max_accuracy
2544
+ value: 88.37098408535495
2545
+ - type: max_ap
2546
+ value: 81.12515230092113
2547
+ - type: max_f1
2548
+ value: 74.10338225909379
2549
+ - task:
2550
+ type: PairClassification
2551
+ dataset:
2552
+ type: mteb/twitterurlcorpus-pairclassification
2553
+ name: MTEB TwitterURLCorpus
2554
+ config: default
2555
+ split: test
2556
+ revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
2557
+ metrics:
2558
+ - type: cos_sim_accuracy
2559
+ value: 89.79896767182831
2560
+ - type: cos_sim_ap
2561
+ value: 87.40071784061065
2562
+ - type: cos_sim_f1
2563
+ value: 79.87753144712087
2564
+ - type: cos_sim_precision
2565
+ value: 76.67304015296367
2566
+ - type: cos_sim_recall
2567
+ value: 83.3615645210964
2568
+ - type: dot_accuracy
2569
+ value: 88.95486474948578
2570
+ - type: dot_ap
2571
+ value: 86.00227979119943
2572
+ - type: dot_f1
2573
+ value: 78.54601474525914
2574
+ - type: dot_precision
2575
+ value: 75.00525394045535
2576
+ - type: dot_recall
2577
+ value: 82.43763473975977
2578
+ - type: euclidean_accuracy
2579
+ value: 89.7892653393876
2580
+ - type: euclidean_ap
2581
+ value: 87.42174706480819
2582
+ - type: euclidean_f1
2583
+ value: 80.07283321194465
2584
+ - type: euclidean_precision
2585
+ value: 75.96738529574351
2586
+ - type: euclidean_recall
2587
+ value: 84.6473668001232
2588
+ - type: manhattan_accuracy
2589
+ value: 89.8474793340319
2590
+ - type: manhattan_ap
2591
+ value: 87.47814292587448
2592
+ - type: manhattan_f1
2593
+ value: 80.15461150280949
2594
+ - type: manhattan_precision
2595
+ value: 74.88798234468
2596
+ - type: manhattan_recall
2597
+ value: 86.21804742839544
2598
+ - type: max_accuracy
2599
+ value: 89.8474793340319
2600
+ - type: max_ap
2601
+ value: 87.47814292587448
2602
+ - type: max_f1
2603
+ value: 80.15461150280949
2604
+ ---
2605
+
2606
+ # Model Summary
2607
+
2608
+ > GritLM is a generative representational instruction tuned language model. It unifies text representation (embedding) and text generation into a single model achieving state-of-the-art performance on both types of tasks.
2609
+
2610
+ - **Repository:** [ContextualAI/gritlm](https://github.com/ContextualAI/gritlm)
2611
+ - **Paper:** [TODO](https://arxiv.org/abs/2308.07124)
2612
+
2613
+ | Model | Description |
2614
+ |-------|-------------|
2615
+ | [GritLM 7B](https://hf.co/GritLM/GritLM-7B) | Mistral 7B finetuned using GRIT |
2616
+ | [GritLM 8x7B](https://hf.co/GritLM/GritLM-8x7B) | Mixtral 8x7B finetuned using GRIT |
2617
+
2618
+ # Use
2619
+
2620
+ The model usage is documented [here](TODO). It supports GritLM, Transformers, Sentence Transformers.
2621
+
2622
+ # Citation
2623
+
2624
+ ```bibtex
2625
+ TODO
2626
+ ```