Gregorig's picture
microsoft/deberta-v3-base-finetuned-t_shipping
e53114d verified
|
raw
history blame
1.72 kB
metadata
license: mit
base_model: microsoft/deberta-v3-base
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
model-index:
  - name: deberta-v3-base-finetuned-t_shipping
    results: []

deberta-v3-base-finetuned-t_shipping

This model is a fine-tuned version of microsoft/deberta-v3-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2258
  • Accuracy: 0.94
  • F1: 0.94

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
0.6587 1.0 26 0.5704 0.695 0.6813
0.3813 2.0 52 0.2877 0.91 0.9100
0.163 3.0 78 0.2055 0.945 0.9450
0.1083 4.0 104 0.2040 0.945 0.9450
0.0811 5.0 130 0.2258 0.94 0.94

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.0+cu121
  • Tokenizers 0.19.1