Gradied commited on
Commit
9729aca
1 Parent(s): c294d6c

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +93 -0
README.md ADDED
@@ -0,0 +1,93 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: ntu-spml/distilhubert
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - marsyas/gtzan
8
+ metrics:
9
+ - accuracy
10
+ model-index:
11
+ - name: distilhubert-finetuned-gtzan
12
+ results:
13
+ - task:
14
+ name: Audio Classification
15
+ type: audio-classification
16
+ dataset:
17
+ name: GTZAN
18
+ type: marsyas/gtzan
19
+ config: all
20
+ split: train
21
+ args: all
22
+ metrics:
23
+ - name: Accuracy
24
+ type: accuracy
25
+ value: 0.87
26
+ ---
27
+
28
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
29
+ should probably proofread and complete it, then remove this comment. -->
30
+
31
+ # distilhubert-finetuned-gtzan
32
+
33
+ This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
34
+ It achieves the following results on the evaluation set:
35
+ - Loss: 0.7127
36
+ - Accuracy: 0.87
37
+
38
+ ## Model description
39
+
40
+ More information needed
41
+
42
+ ## Intended uses & limitations
43
+
44
+ More information needed
45
+
46
+ ## Training and evaluation data
47
+
48
+ More information needed
49
+
50
+ ## Training procedure
51
+
52
+ ### Training hyperparameters
53
+
54
+ The following hyperparameters were used during training:
55
+ - learning_rate: 0.0001
56
+ - train_batch_size: 8
57
+ - eval_batch_size: 8
58
+ - seed: 42
59
+ - gradient_accumulation_steps: 2
60
+ - total_train_batch_size: 16
61
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
62
+ - lr_scheduler_type: linear
63
+ - lr_scheduler_warmup_ratio: 0.2
64
+ - num_epochs: 16
65
+
66
+ ### Training results
67
+
68
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
69
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
70
+ | 2.2072 | 0.99 | 56 | 2.1364 | 0.37 |
71
+ | 1.6502 | 2.0 | 113 | 1.5282 | 0.63 |
72
+ | 1.2965 | 2.99 | 169 | 1.1371 | 0.69 |
73
+ | 1.0407 | 4.0 | 226 | 0.9643 | 0.74 |
74
+ | 0.6558 | 4.99 | 282 | 0.7303 | 0.76 |
75
+ | 0.3615 | 6.0 | 339 | 0.7688 | 0.78 |
76
+ | 0.3705 | 6.99 | 395 | 0.5905 | 0.85 |
77
+ | 0.2165 | 8.0 | 452 | 0.6988 | 0.81 |
78
+ | 0.1098 | 8.99 | 508 | 0.4604 | 0.9 |
79
+ | 0.0647 | 10.0 | 565 | 0.6756 | 0.87 |
80
+ | 0.0179 | 10.99 | 621 | 0.8108 | 0.83 |
81
+ | 0.0278 | 12.0 | 678 | 0.6674 | 0.87 |
82
+ | 0.0075 | 12.99 | 734 | 0.8230 | 0.83 |
83
+ | 0.0061 | 14.0 | 791 | 0.8155 | 0.85 |
84
+ | 0.0056 | 14.99 | 847 | 0.7233 | 0.87 |
85
+ | 0.0055 | 15.86 | 896 | 0.7127 | 0.87 |
86
+
87
+
88
+ ### Framework versions
89
+
90
+ - Transformers 4.31.0
91
+ - Pytorch 2.0.1+cu118
92
+ - Datasets 2.14.1
93
+ - Tokenizers 0.13.3