|
--- |
|
language: en |
|
license: mit |
|
tags: |
|
- object-detection |
|
- pytorch |
|
- fasterrcnn |
|
- computer-vision |
|
- pascalvoc |
|
model-index: |
|
- name: Faster R-CNN Object Detection (Pascal VOC) |
|
results: |
|
- task: |
|
type: object-detection |
|
name: Object Detection |
|
dataset: |
|
name: Pascal VOC 2012 |
|
type: pascal_voc |
|
metrics: |
|
- name: mAP |
|
type: mean_average_precision |
|
value: 0.72 |
|
--- |
|
|
|
# Faster R-CNN Object Detection (Pascal VOC - PyTorch) |
|
|
|
This repository contains a custom-trained **Faster R-CNN** object detection model using PyTorch. The model is trained on the Pascal VOC 2012 dataset and detects 20 common object classes in images by drawing bounding boxes with confidence scores. |
|
|
|
## Model Info |
|
|
|
- **Architecture**: Faster R-CNN with ResNet-50 FPN |
|
- **Framework**: PyTorch |
|
- **Dataset**: Pascal VOC 2012 |
|
- **Number of Classes**: 20 (excluding background) |
|
- **File Format**: `objectdetection_model.pth` |
|
|
|
## Object Classes |
|
|
|
```text |
|
['aeroplane', 'bicycle', 'bird', 'boat', 'bottle', |
|
'bus', 'car', 'cat', 'chair', 'cow', |
|
'diningtable', 'dog', 'horse', 'motorbike', 'person', |
|
'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor'] |
|
|