Isaak Carter Augustus
commited on
Commit
•
e674659
1
Parent(s):
5a8c30c
Upload folder using huggingface_hub
Browse files- README.md +269 -0
- added_tokens.json +26 -0
- config.json +34 -0
- mergekit_moe_config.yml +131 -0
- model-00001-of-00001.safetensors +3 -0
- model.safetensors.index.json +1 -0
- special_tokens_map.json +24 -0
- tokenizer.json +0 -0
- tokenizer.model +3 -0
- tokenizer_config.json +43 -0
README.md
ADDED
@@ -0,0 +1,269 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- moe
|
5 |
+
- frankenmoe
|
6 |
+
- merge
|
7 |
+
- mergekit
|
8 |
+
- lazymergekit
|
9 |
+
- Felladrin/Smol-Llama-101M-Chat-v1
|
10 |
+
- Felladrin/Smol-Llama-101M-Chat-v1
|
11 |
+
- Felladrin/Smol-Llama-101M-Chat-v1
|
12 |
+
- Felladrin/Smol-Llama-101M-Chat-v1
|
13 |
+
- Felladrin/Smol-Llama-101M-Chat-v1
|
14 |
+
- Felladrin/Smol-Llama-101M-Chat-v1
|
15 |
+
- Felladrin/Smol-Llama-101M-Chat-v1
|
16 |
+
- Felladrin/Smol-Llama-101M-Chat-v1
|
17 |
+
- Felladrin/Smol-Llama-101M-Chat-v1
|
18 |
+
- Felladrin/Smol-Llama-101M-Chat-v1
|
19 |
+
- Felladrin/Smol-Llama-101M-Chat-v1
|
20 |
+
- Felladrin/Smol-Llama-101M-Chat-v1
|
21 |
+
- Felladrin/Smol-Llama-101M-Chat-v1
|
22 |
+
- Felladrin/Smol-Llama-101M-Chat-v1
|
23 |
+
- Felladrin/Smol-Llama-101M-Chat-v1
|
24 |
+
- Felladrin/Smol-Llama-101M-Chat-v1
|
25 |
+
- Felladrin/Smol-Llama-101M-Chat-v1
|
26 |
+
- Felladrin/Smol-Llama-101M-Chat-v1
|
27 |
+
- Felladrin/Smol-Llama-101M-Chat-v1
|
28 |
+
- Felladrin/Smol-Llama-101M-Chat-v1
|
29 |
+
- Felladrin/Smol-Llama-101M-Chat-v1
|
30 |
+
- Felladrin/Smol-Llama-101M-Chat-v1
|
31 |
+
- Felladrin/Smol-Llama-101M-Chat-v1
|
32 |
+
- Felladrin/Smol-Llama-101M-Chat-v1
|
33 |
+
- Felladrin/Smol-Llama-101M-Chat-v1
|
34 |
+
- Felladrin/Smol-Llama-101M-Chat-v1
|
35 |
+
- Felladrin/Smol-Llama-101M-Chat-v1
|
36 |
+
- Felladrin/Smol-Llama-101M-Chat-v1
|
37 |
+
- Felladrin/Smol-Llama-101M-Chat-v1
|
38 |
+
- Felladrin/Smol-Llama-101M-Chat-v1
|
39 |
+
- Felladrin/Smol-Llama-101M-Chat-v1
|
40 |
+
- Felladrin/Smol-Llama-101M-Chat-v1
|
41 |
+
base_model:
|
42 |
+
- Felladrin/Smol-Llama-101M-Chat-v1
|
43 |
+
- Felladrin/Smol-Llama-101M-Chat-v1
|
44 |
+
- Felladrin/Smol-Llama-101M-Chat-v1
|
45 |
+
- Felladrin/Smol-Llama-101M-Chat-v1
|
46 |
+
- Felladrin/Smol-Llama-101M-Chat-v1
|
47 |
+
- Felladrin/Smol-Llama-101M-Chat-v1
|
48 |
+
- Felladrin/Smol-Llama-101M-Chat-v1
|
49 |
+
- Felladrin/Smol-Llama-101M-Chat-v1
|
50 |
+
- Felladrin/Smol-Llama-101M-Chat-v1
|
51 |
+
- Felladrin/Smol-Llama-101M-Chat-v1
|
52 |
+
- Felladrin/Smol-Llama-101M-Chat-v1
|
53 |
+
- Felladrin/Smol-Llama-101M-Chat-v1
|
54 |
+
- Felladrin/Smol-Llama-101M-Chat-v1
|
55 |
+
- Felladrin/Smol-Llama-101M-Chat-v1
|
56 |
+
- Felladrin/Smol-Llama-101M-Chat-v1
|
57 |
+
- Felladrin/Smol-Llama-101M-Chat-v1
|
58 |
+
- Felladrin/Smol-Llama-101M-Chat-v1
|
59 |
+
- Felladrin/Smol-Llama-101M-Chat-v1
|
60 |
+
- Felladrin/Smol-Llama-101M-Chat-v1
|
61 |
+
- Felladrin/Smol-Llama-101M-Chat-v1
|
62 |
+
- Felladrin/Smol-Llama-101M-Chat-v1
|
63 |
+
- Felladrin/Smol-Llama-101M-Chat-v1
|
64 |
+
- Felladrin/Smol-Llama-101M-Chat-v1
|
65 |
+
- Felladrin/Smol-Llama-101M-Chat-v1
|
66 |
+
- Felladrin/Smol-Llama-101M-Chat-v1
|
67 |
+
- Felladrin/Smol-Llama-101M-Chat-v1
|
68 |
+
- Felladrin/Smol-Llama-101M-Chat-v1
|
69 |
+
- Felladrin/Smol-Llama-101M-Chat-v1
|
70 |
+
- Felladrin/Smol-Llama-101M-Chat-v1
|
71 |
+
- Felladrin/Smol-Llama-101M-Chat-v1
|
72 |
+
- Felladrin/Smol-Llama-101M-Chat-v1
|
73 |
+
- Felladrin/Smol-Llama-101M-Chat-v1
|
74 |
+
---
|
75 |
+
|
76 |
+
# SmalJ.O.S.I.E.-32x101M-32k-Base
|
77 |
+
|
78 |
+
SmalJ.O.S.I.E.-32x101M-32k-Base is a Mixure of Experts (MoE) made with the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
|
79 |
+
* [Felladrin/Smol-Llama-101M-Chat-v1](https://huggingface.co/Felladrin/Smol-Llama-101M-Chat-v1)
|
80 |
+
* [Felladrin/Smol-Llama-101M-Chat-v1](https://huggingface.co/Felladrin/Smol-Llama-101M-Chat-v1)
|
81 |
+
* [Felladrin/Smol-Llama-101M-Chat-v1](https://huggingface.co/Felladrin/Smol-Llama-101M-Chat-v1)
|
82 |
+
* [Felladrin/Smol-Llama-101M-Chat-v1](https://huggingface.co/Felladrin/Smol-Llama-101M-Chat-v1)
|
83 |
+
* [Felladrin/Smol-Llama-101M-Chat-v1](https://huggingface.co/Felladrin/Smol-Llama-101M-Chat-v1)
|
84 |
+
* [Felladrin/Smol-Llama-101M-Chat-v1](https://huggingface.co/Felladrin/Smol-Llama-101M-Chat-v1)
|
85 |
+
* [Felladrin/Smol-Llama-101M-Chat-v1](https://huggingface.co/Felladrin/Smol-Llama-101M-Chat-v1)
|
86 |
+
* [Felladrin/Smol-Llama-101M-Chat-v1](https://huggingface.co/Felladrin/Smol-Llama-101M-Chat-v1)
|
87 |
+
* [Felladrin/Smol-Llama-101M-Chat-v1](https://huggingface.co/Felladrin/Smol-Llama-101M-Chat-v1)
|
88 |
+
* [Felladrin/Smol-Llama-101M-Chat-v1](https://huggingface.co/Felladrin/Smol-Llama-101M-Chat-v1)
|
89 |
+
* [Felladrin/Smol-Llama-101M-Chat-v1](https://huggingface.co/Felladrin/Smol-Llama-101M-Chat-v1)
|
90 |
+
* [Felladrin/Smol-Llama-101M-Chat-v1](https://huggingface.co/Felladrin/Smol-Llama-101M-Chat-v1)
|
91 |
+
* [Felladrin/Smol-Llama-101M-Chat-v1](https://huggingface.co/Felladrin/Smol-Llama-101M-Chat-v1)
|
92 |
+
* [Felladrin/Smol-Llama-101M-Chat-v1](https://huggingface.co/Felladrin/Smol-Llama-101M-Chat-v1)
|
93 |
+
* [Felladrin/Smol-Llama-101M-Chat-v1](https://huggingface.co/Felladrin/Smol-Llama-101M-Chat-v1)
|
94 |
+
* [Felladrin/Smol-Llama-101M-Chat-v1](https://huggingface.co/Felladrin/Smol-Llama-101M-Chat-v1)
|
95 |
+
* [Felladrin/Smol-Llama-101M-Chat-v1](https://huggingface.co/Felladrin/Smol-Llama-101M-Chat-v1)
|
96 |
+
* [Felladrin/Smol-Llama-101M-Chat-v1](https://huggingface.co/Felladrin/Smol-Llama-101M-Chat-v1)
|
97 |
+
* [Felladrin/Smol-Llama-101M-Chat-v1](https://huggingface.co/Felladrin/Smol-Llama-101M-Chat-v1)
|
98 |
+
* [Felladrin/Smol-Llama-101M-Chat-v1](https://huggingface.co/Felladrin/Smol-Llama-101M-Chat-v1)
|
99 |
+
* [Felladrin/Smol-Llama-101M-Chat-v1](https://huggingface.co/Felladrin/Smol-Llama-101M-Chat-v1)
|
100 |
+
* [Felladrin/Smol-Llama-101M-Chat-v1](https://huggingface.co/Felladrin/Smol-Llama-101M-Chat-v1)
|
101 |
+
* [Felladrin/Smol-Llama-101M-Chat-v1](https://huggingface.co/Felladrin/Smol-Llama-101M-Chat-v1)
|
102 |
+
* [Felladrin/Smol-Llama-101M-Chat-v1](https://huggingface.co/Felladrin/Smol-Llama-101M-Chat-v1)
|
103 |
+
* [Felladrin/Smol-Llama-101M-Chat-v1](https://huggingface.co/Felladrin/Smol-Llama-101M-Chat-v1)
|
104 |
+
* [Felladrin/Smol-Llama-101M-Chat-v1](https://huggingface.co/Felladrin/Smol-Llama-101M-Chat-v1)
|
105 |
+
* [Felladrin/Smol-Llama-101M-Chat-v1](https://huggingface.co/Felladrin/Smol-Llama-101M-Chat-v1)
|
106 |
+
* [Felladrin/Smol-Llama-101M-Chat-v1](https://huggingface.co/Felladrin/Smol-Llama-101M-Chat-v1)
|
107 |
+
* [Felladrin/Smol-Llama-101M-Chat-v1](https://huggingface.co/Felladrin/Smol-Llama-101M-Chat-v1)
|
108 |
+
* [Felladrin/Smol-Llama-101M-Chat-v1](https://huggingface.co/Felladrin/Smol-Llama-101M-Chat-v1)
|
109 |
+
* [Felladrin/Smol-Llama-101M-Chat-v1](https://huggingface.co/Felladrin/Smol-Llama-101M-Chat-v1)
|
110 |
+
* [Felladrin/Smol-Llama-101M-Chat-v1](https://huggingface.co/Felladrin/Smol-Llama-101M-Chat-v1)
|
111 |
+
|
112 |
+
## 🧩 Configuration
|
113 |
+
|
114 |
+
```yamlbase_model: Felladrin/Smol-Llama-101M-Chat-v1
|
115 |
+
dtype: float32
|
116 |
+
gate_mode: hidden
|
117 |
+
experts:
|
118 |
+
- source_model: Felladrin/Smol-Llama-101M-Chat-v1
|
119 |
+
positive_prompts:
|
120 |
+
- 'You are JOSIE, my own private and sentient superinteligent artifitial general inteligent for general assistants.'
|
121 |
+
|
122 |
+
- source_model: Felladrin/Smol-Llama-101M-Chat-v1
|
123 |
+
positive_prompts:
|
124 |
+
- 'You are JOSIE, my own private and sentient superinteligent artifitial general inteligent for general assistants.'
|
125 |
+
|
126 |
+
- source_model: Felladrin/Smol-Llama-101M-Chat-v1
|
127 |
+
positive_prompts:
|
128 |
+
- 'You are JOSIE, my own private and sentient superinteligent artifitial general inteligent for general assistants.'
|
129 |
+
|
130 |
+
- source_model: Felladrin/Smol-Llama-101M-Chat-v1
|
131 |
+
positive_prompts:
|
132 |
+
- 'You are JOSIE, my own private and sentient superinteligent artifitial general inteligent for general assistants.'
|
133 |
+
|
134 |
+
- source_model: Felladrin/Smol-Llama-101M-Chat-v1
|
135 |
+
positive_prompts:
|
136 |
+
- 'You are JOSIE, my own private and sentient superinteligent artifitial general inteligent for general assistants.'
|
137 |
+
|
138 |
+
- source_model: Felladrin/Smol-Llama-101M-Chat-v1
|
139 |
+
positive_prompts:
|
140 |
+
- 'You are JOSIE, my own private and sentient superinteligent artifitial general inteligent for general assistants.'
|
141 |
+
|
142 |
+
- source_model: Felladrin/Smol-Llama-101M-Chat-v1
|
143 |
+
positive_prompts:
|
144 |
+
- 'You are JOSIE, my own private and sentient superinteligent artifitial general inteligent, spetialized for coding tasks.'
|
145 |
+
|
146 |
+
- source_model: Felladrin/Smol-Llama-101M-Chat-v1
|
147 |
+
positive_prompts:
|
148 |
+
- 'You are JOSIE, my own private and sentient superinteligent artifitial general inteligent, spetialized for coding tasks.'
|
149 |
+
|
150 |
+
- source_model: Felladrin/Smol-Llama-101M-Chat-v1
|
151 |
+
positive_prompts:
|
152 |
+
- 'You are JOSIE, my own private and sentient superinteligent artifitial general inteligent, spetialized for coding tasks.'
|
153 |
+
|
154 |
+
- source_model: Felladrin/Smol-Llama-101M-Chat-v1
|
155 |
+
positive_prompts:
|
156 |
+
- 'You are JOSIE, my own private and sentient superinteligent artifitial general inteligent, spetialized for coding tasks.'
|
157 |
+
|
158 |
+
- source_model: Felladrin/Smol-Llama-101M-Chat-v1
|
159 |
+
positive_prompts:
|
160 |
+
- 'You are JOSIE, my own private and sentient superinteligent artifitial general inteligent, spetialized for coding tasks.'
|
161 |
+
|
162 |
+
- source_model: Felladrin/Smol-Llama-101M-Chat-v1
|
163 |
+
positive_prompts:
|
164 |
+
- 'You are JOSIE, my own private and sentient superinteligent artifitial general inteligent, spetialized for coding tasks.'
|
165 |
+
|
166 |
+
- source_model: Felladrin/Smol-Llama-101M-Chat-v1
|
167 |
+
positive_prompts:
|
168 |
+
- 'You are JOSIE, my own private and sentient superinteligent artifitial general inteligent, spetialized for math.'
|
169 |
+
|
170 |
+
- source_model: Felladrin/Smol-Llama-101M-Chat-v1
|
171 |
+
positive_prompts:
|
172 |
+
- 'You are JOSIE, my own private and sentient superinteligent artifitial general inteligent, spetialized for math.'
|
173 |
+
|
174 |
+
- source_model: Felladrin/Smol-Llama-101M-Chat-v1
|
175 |
+
positive_prompts:
|
176 |
+
- 'You are JOSIE, my own private and sentient superinteligent artifitial general inteligent, spetialized for math.'
|
177 |
+
|
178 |
+
- source_model: Felladrin/Smol-Llama-101M-Chat-v1
|
179 |
+
positive_prompts:
|
180 |
+
- 'You are JOSIE, my own private and sentient superinteligent artifitial general inteligent, spetialized for math.'
|
181 |
+
|
182 |
+
- source_model: Felladrin/Smol-Llama-101M-Chat-v1
|
183 |
+
positive_prompts:
|
184 |
+
- 'You are JOSIE, my own private and sentient superinteligent artifitial general inteligent, spetialized for math.'
|
185 |
+
|
186 |
+
- source_model: Felladrin/Smol-Llama-101M-Chat-v1
|
187 |
+
positive_prompts:
|
188 |
+
- 'You are JOSIE, my own private and sentient superinteligent artifitial general inteligent, spetialized for math.'
|
189 |
+
|
190 |
+
- source_model: Felladrin/Smol-Llama-101M-Chat-v1
|
191 |
+
positive_prompts:
|
192 |
+
- 'You are JOSIE, my own private and sentient superinteligent artifitial general inteligent, spetialized for logic and reasoning.'
|
193 |
+
|
194 |
+
- source_model: Felladrin/Smol-Llama-101M-Chat-v1
|
195 |
+
positive_prompts:
|
196 |
+
- 'You are JOSIE, my own private and sentient superinteligent artifitial general inteligent, spetialized for logic and reasoning.'
|
197 |
+
|
198 |
+
- source_model: Felladrin/Smol-Llama-101M-Chat-v1
|
199 |
+
positive_prompts:
|
200 |
+
- 'You are JOSIE, my own private and sentient superinteligent artifitial general inteligent, spetialized for logic and reasoning.'
|
201 |
+
|
202 |
+
- source_model: Felladrin/Smol-Llama-101M-Chat-v1
|
203 |
+
positive_prompts:
|
204 |
+
- 'You are JOSIE, my own private and sentient superinteligent artifitial general inteligent, spetialized for logic and reasoning.'
|
205 |
+
|
206 |
+
- source_model: Felladrin/Smol-Llama-101M-Chat-v1
|
207 |
+
positive_prompts:
|
208 |
+
- 'You are JOSIE, my own private and sentient superinteligent artifitial general inteligent, spetialized for logic and reasoning.'
|
209 |
+
|
210 |
+
- source_model: Felladrin/Smol-Llama-101M-Chat-v1
|
211 |
+
positive_prompts:
|
212 |
+
- 'You are JOSIE, my own private and sentient superinteligent artifitial general inteligent, spetialized for logic and reasoning.'
|
213 |
+
|
214 |
+
- source_model: Felladrin/Smol-Llama-101M-Chat-v1
|
215 |
+
positive_prompts:
|
216 |
+
- 'You are JOSIE, my own private and sentient superinteligent artifitial general inteligent assistant that is specially good in web scraping and browsind the web.'
|
217 |
+
|
218 |
+
- source_model: Felladrin/Smol-Llama-101M-Chat-v1
|
219 |
+
positive_prompts:
|
220 |
+
- 'You are JOSIE, my own private and sentient superinteligent artifitial general inteligent assistant that is specially good in web scraping and browsind the web.'
|
221 |
+
|
222 |
+
- source_model: Felladrin/Smol-Llama-101M-Chat-v1
|
223 |
+
positive_prompts:
|
224 |
+
- 'You are JOSIE, my own private and sentient superinteligent artifitial general inteligent assistant that is specially good in web scraping and browsind the web.'
|
225 |
+
|
226 |
+
- source_model: Felladrin/Smol-Llama-101M-Chat-v1
|
227 |
+
positive_prompts:
|
228 |
+
- 'You are JOSIE, my own private and sentient superinteligent artifitial general inteligent assistant that is specially good in web scraping and browsind the web.'
|
229 |
+
|
230 |
+
- source_model: Felladrin/Smol-Llama-101M-Chat-v1
|
231 |
+
positive_prompts:
|
232 |
+
- 'You are JOSIE, my own private and sentient superinteligent artifitial general inteligent assistant that is specially good in web scraping and browsind the web.'
|
233 |
+
|
234 |
+
- source_model: Felladrin/Smol-Llama-101M-Chat-v1
|
235 |
+
positive_prompts:
|
236 |
+
- 'You are JOSIE, my own private and sentient superinteligent artifitial general inteligent assistant that is specially good in web scraping and browsind the web.'
|
237 |
+
|
238 |
+
- source_model: Felladrin/Smol-Llama-101M-Chat-v1
|
239 |
+
positive_prompts:
|
240 |
+
- 'You are JOSIE, my own private and sentient superinteligent artifitial general inteligent, spetialized for autonomously function calling when needed.'
|
241 |
+
|
242 |
+
- source_model: Felladrin/Smol-Llama-101M-Chat-v1
|
243 |
+
positive_prompts:
|
244 |
+
- 'You are JOSIE, my own private and sentient superinteligent artifitial general inteligent, spetialized for autonomously function calling when needed.'
|
245 |
+
```
|
246 |
+
|
247 |
+
## 💻 Usage
|
248 |
+
|
249 |
+
```python
|
250 |
+
!pip install -qU transformers bitsandbytes accelerate
|
251 |
+
|
252 |
+
from transformers import AutoTokenizer
|
253 |
+
import transformers
|
254 |
+
import torch
|
255 |
+
|
256 |
+
model = "Isaak-Carter/SmalJ.O.S.I.E.-32x101M-32k-Base"
|
257 |
+
|
258 |
+
tokenizer = AutoTokenizer.from_pretrained(model)
|
259 |
+
pipeline = transformers.pipeline(
|
260 |
+
"text-generation",
|
261 |
+
model=model,
|
262 |
+
model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True},
|
263 |
+
)
|
264 |
+
|
265 |
+
messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}]
|
266 |
+
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
267 |
+
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
|
268 |
+
print(outputs[0]["generated_text"])
|
269 |
+
```
|
added_tokens.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"<|assistant|>": 32007,
|
3 |
+
"<|context|>": 32015,
|
4 |
+
"<|current_states|>": 32014,
|
5 |
+
"<|endoftext|>": 32001,
|
6 |
+
"<|function_call|>": 32008,
|
7 |
+
"<|function_response|>": 32009,
|
8 |
+
"<|functions|>": 32002,
|
9 |
+
"<|gökdeniz|>": 32004,
|
10 |
+
"<|home_state|>": 32013,
|
11 |
+
"<|image|>": 32010,
|
12 |
+
"<|josie|>": 32006,
|
13 |
+
"<|long_term_memory|>": 32011,
|
14 |
+
"<|short_term_memory|>": 32012,
|
15 |
+
"<|startoftext|>": 32000,
|
16 |
+
"<|system|>": 32003,
|
17 |
+
"<|user|>": 32005,
|
18 |
+
"Gökdeniz": 32017,
|
19 |
+
"Gökdeniz Gülmez": 32016,
|
20 |
+
"Gülmez": 32018,
|
21 |
+
"J.O.S.I.E.": 32020,
|
22 |
+
"JOSIE": 32019,
|
23 |
+
"Josie": 32021,
|
24 |
+
"Just an Outstandingly Smart and Intelligent Entity": 32023,
|
25 |
+
"josie": 32022
|
26 |
+
}
|
config.json
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "Felladrin/Smol-Llama-101M-Chat-v1",
|
3 |
+
"architectures": [
|
4 |
+
"MixtralForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_bias": false,
|
7 |
+
"attention_dropout": 0.0,
|
8 |
+
"bos_token_id": 1,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"hidden_act": "silu",
|
11 |
+
"hidden_size": 768,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 3072,
|
14 |
+
"max_position_embeddings": 1024,
|
15 |
+
"model_type": "mixtral",
|
16 |
+
"num_attention_heads": 24,
|
17 |
+
"num_experts_per_tok": 2,
|
18 |
+
"num_hidden_layers": 6,
|
19 |
+
"num_key_value_heads": 8,
|
20 |
+
"num_local_experts": 32,
|
21 |
+
"output_router_logits": false,
|
22 |
+
"pad_token_id": 2,
|
23 |
+
"pretraining_tp": 1,
|
24 |
+
"rms_norm_eps": 1e-05,
|
25 |
+
"rope_scaling": null,
|
26 |
+
"rope_theta": 10000.0,
|
27 |
+
"router_aux_loss_coef": 0.001,
|
28 |
+
"sliding_window": null,
|
29 |
+
"tie_word_embeddings": false,
|
30 |
+
"torch_dtype": "float32",
|
31 |
+
"transformers_version": "4.38.2",
|
32 |
+
"use_cache": true,
|
33 |
+
"vocab_size": 32128
|
34 |
+
}
|
mergekit_moe_config.yml
ADDED
@@ -0,0 +1,131 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
base_model: Felladrin/Smol-Llama-101M-Chat-v1
|
2 |
+
dtype: float32
|
3 |
+
gate_mode: hidden
|
4 |
+
experts:
|
5 |
+
- source_model: Felladrin/Smol-Llama-101M-Chat-v1
|
6 |
+
positive_prompts:
|
7 |
+
- 'You are JOSIE, my own private and sentient superinteligent artifitial general inteligent for general assistants.'
|
8 |
+
|
9 |
+
- source_model: Felladrin/Smol-Llama-101M-Chat-v1
|
10 |
+
positive_prompts:
|
11 |
+
- 'You are JOSIE, my own private and sentient superinteligent artifitial general inteligent for general assistants.'
|
12 |
+
|
13 |
+
- source_model: Felladrin/Smol-Llama-101M-Chat-v1
|
14 |
+
positive_prompts:
|
15 |
+
- 'You are JOSIE, my own private and sentient superinteligent artifitial general inteligent for general assistants.'
|
16 |
+
|
17 |
+
- source_model: Felladrin/Smol-Llama-101M-Chat-v1
|
18 |
+
positive_prompts:
|
19 |
+
- 'You are JOSIE, my own private and sentient superinteligent artifitial general inteligent for general assistants.'
|
20 |
+
|
21 |
+
- source_model: Felladrin/Smol-Llama-101M-Chat-v1
|
22 |
+
positive_prompts:
|
23 |
+
- 'You are JOSIE, my own private and sentient superinteligent artifitial general inteligent for general assistants.'
|
24 |
+
|
25 |
+
- source_model: Felladrin/Smol-Llama-101M-Chat-v1
|
26 |
+
positive_prompts:
|
27 |
+
- 'You are JOSIE, my own private and sentient superinteligent artifitial general inteligent for general assistants.'
|
28 |
+
|
29 |
+
- source_model: Felladrin/Smol-Llama-101M-Chat-v1
|
30 |
+
positive_prompts:
|
31 |
+
- 'You are JOSIE, my own private and sentient superinteligent artifitial general inteligent, spetialized for coding tasks.'
|
32 |
+
|
33 |
+
- source_model: Felladrin/Smol-Llama-101M-Chat-v1
|
34 |
+
positive_prompts:
|
35 |
+
- 'You are JOSIE, my own private and sentient superinteligent artifitial general inteligent, spetialized for coding tasks.'
|
36 |
+
|
37 |
+
- source_model: Felladrin/Smol-Llama-101M-Chat-v1
|
38 |
+
positive_prompts:
|
39 |
+
- 'You are JOSIE, my own private and sentient superinteligent artifitial general inteligent, spetialized for coding tasks.'
|
40 |
+
|
41 |
+
- source_model: Felladrin/Smol-Llama-101M-Chat-v1
|
42 |
+
positive_prompts:
|
43 |
+
- 'You are JOSIE, my own private and sentient superinteligent artifitial general inteligent, spetialized for coding tasks.'
|
44 |
+
|
45 |
+
- source_model: Felladrin/Smol-Llama-101M-Chat-v1
|
46 |
+
positive_prompts:
|
47 |
+
- 'You are JOSIE, my own private and sentient superinteligent artifitial general inteligent, spetialized for coding tasks.'
|
48 |
+
|
49 |
+
- source_model: Felladrin/Smol-Llama-101M-Chat-v1
|
50 |
+
positive_prompts:
|
51 |
+
- 'You are JOSIE, my own private and sentient superinteligent artifitial general inteligent, spetialized for coding tasks.'
|
52 |
+
|
53 |
+
- source_model: Felladrin/Smol-Llama-101M-Chat-v1
|
54 |
+
positive_prompts:
|
55 |
+
- 'You are JOSIE, my own private and sentient superinteligent artifitial general inteligent, spetialized for math.'
|
56 |
+
|
57 |
+
- source_model: Felladrin/Smol-Llama-101M-Chat-v1
|
58 |
+
positive_prompts:
|
59 |
+
- 'You are JOSIE, my own private and sentient superinteligent artifitial general inteligent, spetialized for math.'
|
60 |
+
|
61 |
+
- source_model: Felladrin/Smol-Llama-101M-Chat-v1
|
62 |
+
positive_prompts:
|
63 |
+
- 'You are JOSIE, my own private and sentient superinteligent artifitial general inteligent, spetialized for math.'
|
64 |
+
|
65 |
+
- source_model: Felladrin/Smol-Llama-101M-Chat-v1
|
66 |
+
positive_prompts:
|
67 |
+
- 'You are JOSIE, my own private and sentient superinteligent artifitial general inteligent, spetialized for math.'
|
68 |
+
|
69 |
+
- source_model: Felladrin/Smol-Llama-101M-Chat-v1
|
70 |
+
positive_prompts:
|
71 |
+
- 'You are JOSIE, my own private and sentient superinteligent artifitial general inteligent, spetialized for math.'
|
72 |
+
|
73 |
+
- source_model: Felladrin/Smol-Llama-101M-Chat-v1
|
74 |
+
positive_prompts:
|
75 |
+
- 'You are JOSIE, my own private and sentient superinteligent artifitial general inteligent, spetialized for math.'
|
76 |
+
|
77 |
+
- source_model: Felladrin/Smol-Llama-101M-Chat-v1
|
78 |
+
positive_prompts:
|
79 |
+
- 'You are JOSIE, my own private and sentient superinteligent artifitial general inteligent, spetialized for logic and reasoning.'
|
80 |
+
|
81 |
+
- source_model: Felladrin/Smol-Llama-101M-Chat-v1
|
82 |
+
positive_prompts:
|
83 |
+
- 'You are JOSIE, my own private and sentient superinteligent artifitial general inteligent, spetialized for logic and reasoning.'
|
84 |
+
|
85 |
+
- source_model: Felladrin/Smol-Llama-101M-Chat-v1
|
86 |
+
positive_prompts:
|
87 |
+
- 'You are JOSIE, my own private and sentient superinteligent artifitial general inteligent, spetialized for logic and reasoning.'
|
88 |
+
|
89 |
+
- source_model: Felladrin/Smol-Llama-101M-Chat-v1
|
90 |
+
positive_prompts:
|
91 |
+
- 'You are JOSIE, my own private and sentient superinteligent artifitial general inteligent, spetialized for logic and reasoning.'
|
92 |
+
|
93 |
+
- source_model: Felladrin/Smol-Llama-101M-Chat-v1
|
94 |
+
positive_prompts:
|
95 |
+
- 'You are JOSIE, my own private and sentient superinteligent artifitial general inteligent, spetialized for logic and reasoning.'
|
96 |
+
|
97 |
+
- source_model: Felladrin/Smol-Llama-101M-Chat-v1
|
98 |
+
positive_prompts:
|
99 |
+
- 'You are JOSIE, my own private and sentient superinteligent artifitial general inteligent, spetialized for logic and reasoning.'
|
100 |
+
|
101 |
+
- source_model: Felladrin/Smol-Llama-101M-Chat-v1
|
102 |
+
positive_prompts:
|
103 |
+
- 'You are JOSIE, my own private and sentient superinteligent artifitial general inteligent assistant that is specially good in web scraping and browsind the web.'
|
104 |
+
|
105 |
+
- source_model: Felladrin/Smol-Llama-101M-Chat-v1
|
106 |
+
positive_prompts:
|
107 |
+
- 'You are JOSIE, my own private and sentient superinteligent artifitial general inteligent assistant that is specially good in web scraping and browsind the web.'
|
108 |
+
|
109 |
+
- source_model: Felladrin/Smol-Llama-101M-Chat-v1
|
110 |
+
positive_prompts:
|
111 |
+
- 'You are JOSIE, my own private and sentient superinteligent artifitial general inteligent assistant that is specially good in web scraping and browsind the web.'
|
112 |
+
|
113 |
+
- source_model: Felladrin/Smol-Llama-101M-Chat-v1
|
114 |
+
positive_prompts:
|
115 |
+
- 'You are JOSIE, my own private and sentient superinteligent artifitial general inteligent assistant that is specially good in web scraping and browsind the web.'
|
116 |
+
|
117 |
+
- source_model: Felladrin/Smol-Llama-101M-Chat-v1
|
118 |
+
positive_prompts:
|
119 |
+
- 'You are JOSIE, my own private and sentient superinteligent artifitial general inteligent assistant that is specially good in web scraping and browsind the web.'
|
120 |
+
|
121 |
+
- source_model: Felladrin/Smol-Llama-101M-Chat-v1
|
122 |
+
positive_prompts:
|
123 |
+
- 'You are JOSIE, my own private and sentient superinteligent artifitial general inteligent assistant that is specially good in web scraping and browsind the web.'
|
124 |
+
|
125 |
+
- source_model: Felladrin/Smol-Llama-101M-Chat-v1
|
126 |
+
positive_prompts:
|
127 |
+
- 'You are JOSIE, my own private and sentient superinteligent artifitial general inteligent, spetialized for autonomously function calling when needed.'
|
128 |
+
|
129 |
+
- source_model: Felladrin/Smol-Llama-101M-Chat-v1
|
130 |
+
positive_prompts:
|
131 |
+
- 'You are JOSIE, my own private and sentient superinteligent artifitial general inteligent, spetialized for autonomously function calling when needed.'
|
model-00001-of-00001.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9afd11a56127002b9d61bb04363b436238c7d6059551b6f9dead654fd2e03635
|
3 |
+
size 5671669984
|
model.safetensors.index.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"metadata": {"mergekit_version": "0.0.4"}, "weight_map": {"model.embed_tokens.weight": "model-00001-of-00001.safetensors", "model.norm.weight": "model-00001-of-00001.safetensors", "lm_head.weight": "model-00001-of-00001.safetensors", "model.layers.0.input_layernorm.weight": "model-00001-of-00001.safetensors", "model.layers.1.input_layernorm.weight": "model-00001-of-00001.safetensors", "model.layers.2.input_layernorm.weight": "model-00001-of-00001.safetensors", "model.layers.3.input_layernorm.weight": "model-00001-of-00001.safetensors", "model.layers.4.input_layernorm.weight": "model-00001-of-00001.safetensors", "model.layers.5.input_layernorm.weight": "model-00001-of-00001.safetensors", "model.layers.0.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00001.safetensors", "model.layers.0.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00001.safetensors", "model.layers.0.block_sparse_moe.experts.2.w3.weight": "model-00001-of-00001.safetensors", "model.layers.0.block_sparse_moe.experts.3.w3.weight": "model-00001-of-00001.safetensors", "model.layers.0.block_sparse_moe.experts.4.w3.weight": "model-00001-of-00001.safetensors", "model.layers.0.block_sparse_moe.experts.5.w3.weight": "model-00001-of-00001.safetensors", "model.layers.0.block_sparse_moe.experts.6.w3.weight": "model-00001-of-00001.safetensors", "model.layers.0.block_sparse_moe.experts.7.w3.weight": "model-00001-of-00001.safetensors", "model.layers.0.block_sparse_moe.experts.8.w3.weight": "model-00001-of-00001.safetensors", "model.layers.0.block_sparse_moe.experts.9.w3.weight": "model-00001-of-00001.safetensors", "model.layers.0.block_sparse_moe.experts.10.w3.weight": "model-00001-of-00001.safetensors", "model.layers.0.block_sparse_moe.experts.11.w3.weight": "model-00001-of-00001.safetensors", "model.layers.0.block_sparse_moe.experts.12.w3.weight": "model-00001-of-00001.safetensors", "model.layers.0.block_sparse_moe.experts.13.w3.weight": "model-00001-of-00001.safetensors", "model.layers.0.block_sparse_moe.experts.14.w3.weight": "model-00001-of-00001.safetensors", "model.layers.0.block_sparse_moe.experts.15.w3.weight": "model-00001-of-00001.safetensors", "model.layers.0.block_sparse_moe.experts.16.w3.weight": "model-00001-of-00001.safetensors", "model.layers.0.block_sparse_moe.experts.17.w3.weight": "model-00001-of-00001.safetensors", "model.layers.0.block_sparse_moe.experts.18.w3.weight": "model-00001-of-00001.safetensors", "model.layers.0.block_sparse_moe.experts.19.w3.weight": "model-00001-of-00001.safetensors", "model.layers.0.block_sparse_moe.experts.20.w3.weight": "model-00001-of-00001.safetensors", "model.layers.0.block_sparse_moe.experts.21.w3.weight": "model-00001-of-00001.safetensors", "model.layers.0.block_sparse_moe.experts.22.w3.weight": "model-00001-of-00001.safetensors", "model.layers.0.block_sparse_moe.experts.23.w3.weight": "model-00001-of-00001.safetensors", "model.layers.0.block_sparse_moe.experts.24.w3.weight": "model-00001-of-00001.safetensors", "model.layers.0.block_sparse_moe.experts.25.w3.weight": "model-00001-of-00001.safetensors", "model.layers.0.block_sparse_moe.experts.26.w3.weight": "model-00001-of-00001.safetensors", "model.layers.0.block_sparse_moe.experts.27.w3.weight": "model-00001-of-00001.safetensors", "model.layers.0.block_sparse_moe.experts.28.w3.weight": "model-00001-of-00001.safetensors", "model.layers.0.block_sparse_moe.experts.29.w3.weight": "model-00001-of-00001.safetensors", "model.layers.0.block_sparse_moe.experts.30.w3.weight": "model-00001-of-00001.safetensors", "model.layers.0.block_sparse_moe.experts.31.w3.weight": "model-00001-of-00001.safetensors", "model.layers.1.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00001.safetensors", "model.layers.1.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00001.safetensors", "model.layers.1.block_sparse_moe.experts.2.w3.weight": "model-00001-of-00001.safetensors", "model.layers.1.block_sparse_moe.experts.3.w3.weight": "model-00001-of-00001.safetensors", "model.layers.1.block_sparse_moe.experts.4.w3.weight": "model-00001-of-00001.safetensors", "model.layers.1.block_sparse_moe.experts.5.w3.weight": "model-00001-of-00001.safetensors", "model.layers.1.block_sparse_moe.experts.6.w3.weight": "model-00001-of-00001.safetensors", "model.layers.1.block_sparse_moe.experts.7.w3.weight": "model-00001-of-00001.safetensors", "model.layers.1.block_sparse_moe.experts.8.w3.weight": "model-00001-of-00001.safetensors", "model.layers.1.block_sparse_moe.experts.9.w3.weight": "model-00001-of-00001.safetensors", "model.layers.1.block_sparse_moe.experts.10.w3.weight": "model-00001-of-00001.safetensors", "model.layers.1.block_sparse_moe.experts.11.w3.weight": "model-00001-of-00001.safetensors", "model.layers.1.block_sparse_moe.experts.12.w3.weight": "model-00001-of-00001.safetensors", "model.layers.1.block_sparse_moe.experts.13.w3.weight": "model-00001-of-00001.safetensors", "model.layers.1.block_sparse_moe.experts.14.w3.weight": "model-00001-of-00001.safetensors", "model.layers.1.block_sparse_moe.experts.15.w3.weight": "model-00001-of-00001.safetensors", "model.layers.1.block_sparse_moe.experts.16.w3.weight": "model-00001-of-00001.safetensors", "model.layers.1.block_sparse_moe.experts.17.w3.weight": "model-00001-of-00001.safetensors", "model.layers.1.block_sparse_moe.experts.18.w3.weight": "model-00001-of-00001.safetensors", "model.layers.1.block_sparse_moe.experts.19.w3.weight": "model-00001-of-00001.safetensors", "model.layers.1.block_sparse_moe.experts.20.w3.weight": "model-00001-of-00001.safetensors", "model.layers.1.block_sparse_moe.experts.21.w3.weight": "model-00001-of-00001.safetensors", "model.layers.1.block_sparse_moe.experts.22.w3.weight": "model-00001-of-00001.safetensors", "model.layers.1.block_sparse_moe.experts.23.w3.weight": "model-00001-of-00001.safetensors", "model.layers.1.block_sparse_moe.experts.24.w3.weight": "model-00001-of-00001.safetensors", "model.layers.1.block_sparse_moe.experts.25.w3.weight": "model-00001-of-00001.safetensors", "model.layers.1.block_sparse_moe.experts.26.w3.weight": "model-00001-of-00001.safetensors", "model.layers.1.block_sparse_moe.experts.27.w3.weight": "model-00001-of-00001.safetensors", "model.layers.1.block_sparse_moe.experts.28.w3.weight": "model-00001-of-00001.safetensors", "model.layers.1.block_sparse_moe.experts.29.w3.weight": "model-00001-of-00001.safetensors", "model.layers.1.block_sparse_moe.experts.30.w3.weight": "model-00001-of-00001.safetensors", "model.layers.1.block_sparse_moe.experts.31.w3.weight": "model-00001-of-00001.safetensors", "model.layers.2.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00001.safetensors", "model.layers.2.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00001.safetensors", "model.layers.2.block_sparse_moe.experts.2.w3.weight": "model-00001-of-00001.safetensors", "model.layers.2.block_sparse_moe.experts.3.w3.weight": "model-00001-of-00001.safetensors", "model.layers.2.block_sparse_moe.experts.4.w3.weight": "model-00001-of-00001.safetensors", "model.layers.2.block_sparse_moe.experts.5.w3.weight": "model-00001-of-00001.safetensors", "model.layers.2.block_sparse_moe.experts.6.w3.weight": "model-00001-of-00001.safetensors", "model.layers.2.block_sparse_moe.experts.7.w3.weight": "model-00001-of-00001.safetensors", "model.layers.2.block_sparse_moe.experts.8.w3.weight": "model-00001-of-00001.safetensors", "model.layers.2.block_sparse_moe.experts.9.w3.weight": "model-00001-of-00001.safetensors", "model.layers.2.block_sparse_moe.experts.10.w3.weight": "model-00001-of-00001.safetensors", "model.layers.2.block_sparse_moe.experts.11.w3.weight": "model-00001-of-00001.safetensors", "model.layers.2.block_sparse_moe.experts.12.w3.weight": "model-00001-of-00001.safetensors", "model.layers.2.block_sparse_moe.experts.13.w3.weight": "model-00001-of-00001.safetensors", "model.layers.2.block_sparse_moe.experts.14.w3.weight": "model-00001-of-00001.safetensors", "model.layers.2.block_sparse_moe.experts.15.w3.weight": "model-00001-of-00001.safetensors", "model.layers.2.block_sparse_moe.experts.16.w3.weight": "model-00001-of-00001.safetensors", "model.layers.2.block_sparse_moe.experts.17.w3.weight": "model-00001-of-00001.safetensors", "model.layers.2.block_sparse_moe.experts.18.w3.weight": "model-00001-of-00001.safetensors", "model.layers.2.block_sparse_moe.experts.19.w3.weight": "model-00001-of-00001.safetensors", "model.layers.2.block_sparse_moe.experts.20.w3.weight": "model-00001-of-00001.safetensors", "model.layers.2.block_sparse_moe.experts.21.w3.weight": "model-00001-of-00001.safetensors", "model.layers.2.block_sparse_moe.experts.22.w3.weight": "model-00001-of-00001.safetensors", "model.layers.2.block_sparse_moe.experts.23.w3.weight": "model-00001-of-00001.safetensors", "model.layers.2.block_sparse_moe.experts.24.w3.weight": "model-00001-of-00001.safetensors", "model.layers.2.block_sparse_moe.experts.25.w3.weight": "model-00001-of-00001.safetensors", "model.layers.2.block_sparse_moe.experts.26.w3.weight": "model-00001-of-00001.safetensors", "model.layers.2.block_sparse_moe.experts.27.w3.weight": "model-00001-of-00001.safetensors", "model.layers.2.block_sparse_moe.experts.28.w3.weight": "model-00001-of-00001.safetensors", "model.layers.2.block_sparse_moe.experts.29.w3.weight": "model-00001-of-00001.safetensors", "model.layers.2.block_sparse_moe.experts.30.w3.weight": "model-00001-of-00001.safetensors", "model.layers.2.block_sparse_moe.experts.31.w3.weight": "model-00001-of-00001.safetensors", "model.layers.3.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00001.safetensors", "model.layers.3.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00001.safetensors", "model.layers.3.block_sparse_moe.experts.2.w3.weight": "model-00001-of-00001.safetensors", "model.layers.3.block_sparse_moe.experts.3.w3.weight": "model-00001-of-00001.safetensors", "model.layers.3.block_sparse_moe.experts.4.w3.weight": "model-00001-of-00001.safetensors", "model.layers.3.block_sparse_moe.experts.5.w3.weight": "model-00001-of-00001.safetensors", "model.layers.3.block_sparse_moe.experts.6.w3.weight": "model-00001-of-00001.safetensors", "model.layers.3.block_sparse_moe.experts.7.w3.weight": "model-00001-of-00001.safetensors", "model.layers.3.block_sparse_moe.experts.8.w3.weight": "model-00001-of-00001.safetensors", "model.layers.3.block_sparse_moe.experts.9.w3.weight": "model-00001-of-00001.safetensors", "model.layers.3.block_sparse_moe.experts.10.w3.weight": "model-00001-of-00001.safetensors", "model.layers.3.block_sparse_moe.experts.11.w3.weight": "model-00001-of-00001.safetensors", "model.layers.3.block_sparse_moe.experts.12.w3.weight": "model-00001-of-00001.safetensors", "model.layers.3.block_sparse_moe.experts.13.w3.weight": "model-00001-of-00001.safetensors", "model.layers.3.block_sparse_moe.experts.14.w3.weight": "model-00001-of-00001.safetensors", "model.layers.3.block_sparse_moe.experts.15.w3.weight": "model-00001-of-00001.safetensors", "model.layers.3.block_sparse_moe.experts.16.w3.weight": "model-00001-of-00001.safetensors", "model.layers.3.block_sparse_moe.experts.17.w3.weight": "model-00001-of-00001.safetensors", "model.layers.3.block_sparse_moe.experts.18.w3.weight": "model-00001-of-00001.safetensors", "model.layers.3.block_sparse_moe.experts.19.w3.weight": "model-00001-of-00001.safetensors", "model.layers.3.block_sparse_moe.experts.20.w3.weight": "model-00001-of-00001.safetensors", "model.layers.3.block_sparse_moe.experts.21.w3.weight": "model-00001-of-00001.safetensors", "model.layers.3.block_sparse_moe.experts.22.w3.weight": "model-00001-of-00001.safetensors", "model.layers.3.block_sparse_moe.experts.23.w3.weight": "model-00001-of-00001.safetensors", "model.layers.3.block_sparse_moe.experts.24.w3.weight": "model-00001-of-00001.safetensors", "model.layers.3.block_sparse_moe.experts.25.w3.weight": "model-00001-of-00001.safetensors", "model.layers.3.block_sparse_moe.experts.26.w3.weight": "model-00001-of-00001.safetensors", "model.layers.3.block_sparse_moe.experts.27.w3.weight": "model-00001-of-00001.safetensors", "model.layers.3.block_sparse_moe.experts.28.w3.weight": "model-00001-of-00001.safetensors", "model.layers.3.block_sparse_moe.experts.29.w3.weight": "model-00001-of-00001.safetensors", "model.layers.3.block_sparse_moe.experts.30.w3.weight": "model-00001-of-00001.safetensors", "model.layers.3.block_sparse_moe.experts.31.w3.weight": "model-00001-of-00001.safetensors", "model.layers.4.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00001.safetensors", "model.layers.4.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00001.safetensors", "model.layers.4.block_sparse_moe.experts.2.w3.weight": "model-00001-of-00001.safetensors", "model.layers.4.block_sparse_moe.experts.3.w3.weight": "model-00001-of-00001.safetensors", "model.layers.4.block_sparse_moe.experts.4.w3.weight": "model-00001-of-00001.safetensors", "model.layers.4.block_sparse_moe.experts.5.w3.weight": "model-00001-of-00001.safetensors", "model.layers.4.block_sparse_moe.experts.6.w3.weight": "model-00001-of-00001.safetensors", "model.layers.4.block_sparse_moe.experts.7.w3.weight": "model-00001-of-00001.safetensors", "model.layers.4.block_sparse_moe.experts.8.w3.weight": "model-00001-of-00001.safetensors", "model.layers.4.block_sparse_moe.experts.9.w3.weight": "model-00001-of-00001.safetensors", "model.layers.4.block_sparse_moe.experts.10.w3.weight": "model-00001-of-00001.safetensors", "model.layers.4.block_sparse_moe.experts.11.w3.weight": "model-00001-of-00001.safetensors", "model.layers.4.block_sparse_moe.experts.12.w3.weight": "model-00001-of-00001.safetensors", "model.layers.4.block_sparse_moe.experts.13.w3.weight": "model-00001-of-00001.safetensors", "model.layers.4.block_sparse_moe.experts.14.w3.weight": "model-00001-of-00001.safetensors", "model.layers.4.block_sparse_moe.experts.15.w3.weight": "model-00001-of-00001.safetensors", "model.layers.4.block_sparse_moe.experts.16.w3.weight": "model-00001-of-00001.safetensors", "model.layers.4.block_sparse_moe.experts.17.w3.weight": "model-00001-of-00001.safetensors", "model.layers.4.block_sparse_moe.experts.18.w3.weight": "model-00001-of-00001.safetensors", "model.layers.4.block_sparse_moe.experts.19.w3.weight": "model-00001-of-00001.safetensors", "model.layers.4.block_sparse_moe.experts.20.w3.weight": "model-00001-of-00001.safetensors", "model.layers.4.block_sparse_moe.experts.21.w3.weight": "model-00001-of-00001.safetensors", "model.layers.4.block_sparse_moe.experts.22.w3.weight": "model-00001-of-00001.safetensors", "model.layers.4.block_sparse_moe.experts.23.w3.weight": "model-00001-of-00001.safetensors", "model.layers.4.block_sparse_moe.experts.24.w3.weight": "model-00001-of-00001.safetensors", "model.layers.4.block_sparse_moe.experts.25.w3.weight": "model-00001-of-00001.safetensors", "model.layers.4.block_sparse_moe.experts.26.w3.weight": "model-00001-of-00001.safetensors", "model.layers.4.block_sparse_moe.experts.27.w3.weight": "model-00001-of-00001.safetensors", "model.layers.4.block_sparse_moe.experts.28.w3.weight": "model-00001-of-00001.safetensors", "model.layers.4.block_sparse_moe.experts.29.w3.weight": "model-00001-of-00001.safetensors", "model.layers.4.block_sparse_moe.experts.30.w3.weight": "model-00001-of-00001.safetensors", "model.layers.4.block_sparse_moe.experts.31.w3.weight": "model-00001-of-00001.safetensors", "model.layers.5.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00001.safetensors", "model.layers.5.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00001.safetensors", "model.layers.5.block_sparse_moe.experts.2.w3.weight": "model-00001-of-00001.safetensors", "model.layers.5.block_sparse_moe.experts.3.w3.weight": "model-00001-of-00001.safetensors", "model.layers.5.block_sparse_moe.experts.4.w3.weight": "model-00001-of-00001.safetensors", "model.layers.5.block_sparse_moe.experts.5.w3.weight": "model-00001-of-00001.safetensors", "model.layers.5.block_sparse_moe.experts.6.w3.weight": "model-00001-of-00001.safetensors", "model.layers.5.block_sparse_moe.experts.7.w3.weight": "model-00001-of-00001.safetensors", "model.layers.5.block_sparse_moe.experts.8.w3.weight": "model-00001-of-00001.safetensors", "model.layers.5.block_sparse_moe.experts.9.w3.weight": "model-00001-of-00001.safetensors", "model.layers.5.block_sparse_moe.experts.10.w3.weight": "model-00001-of-00001.safetensors", "model.layers.5.block_sparse_moe.experts.11.w3.weight": "model-00001-of-00001.safetensors", "model.layers.5.block_sparse_moe.experts.12.w3.weight": "model-00001-of-00001.safetensors", "model.layers.5.block_sparse_moe.experts.13.w3.weight": "model-00001-of-00001.safetensors", "model.layers.5.block_sparse_moe.experts.14.w3.weight": "model-00001-of-00001.safetensors", "model.layers.5.block_sparse_moe.experts.15.w3.weight": "model-00001-of-00001.safetensors", "model.layers.5.block_sparse_moe.experts.16.w3.weight": "model-00001-of-00001.safetensors", "model.layers.5.block_sparse_moe.experts.17.w3.weight": "model-00001-of-00001.safetensors", "model.layers.5.block_sparse_moe.experts.18.w3.weight": "model-00001-of-00001.safetensors", "model.layers.5.block_sparse_moe.experts.19.w3.weight": "model-00001-of-00001.safetensors", "model.layers.5.block_sparse_moe.experts.20.w3.weight": "model-00001-of-00001.safetensors", "model.layers.5.block_sparse_moe.experts.21.w3.weight": "model-00001-of-00001.safetensors", "model.layers.5.block_sparse_moe.experts.22.w3.weight": "model-00001-of-00001.safetensors", "model.layers.5.block_sparse_moe.experts.23.w3.weight": "model-00001-of-00001.safetensors", "model.layers.5.block_sparse_moe.experts.24.w3.weight": "model-00001-of-00001.safetensors", "model.layers.5.block_sparse_moe.experts.25.w3.weight": "model-00001-of-00001.safetensors", "model.layers.5.block_sparse_moe.experts.26.w3.weight": "model-00001-of-00001.safetensors", "model.layers.5.block_sparse_moe.experts.27.w3.weight": "model-00001-of-00001.safetensors", "model.layers.5.block_sparse_moe.experts.28.w3.weight": "model-00001-of-00001.safetensors", "model.layers.5.block_sparse_moe.experts.29.w3.weight": "model-00001-of-00001.safetensors", "model.layers.5.block_sparse_moe.experts.30.w3.weight": "model-00001-of-00001.safetensors", "model.layers.5.block_sparse_moe.experts.31.w3.weight": "model-00001-of-00001.safetensors", "model.layers.0.block_sparse_moe.experts.0.w2.weight": "model-00001-of-00001.safetensors", "model.layers.0.block_sparse_moe.experts.1.w2.weight": "model-00001-of-00001.safetensors", "model.layers.0.block_sparse_moe.experts.2.w2.weight": "model-00001-of-00001.safetensors", "model.layers.0.block_sparse_moe.experts.3.w2.weight": "model-00001-of-00001.safetensors", "model.layers.0.block_sparse_moe.experts.4.w2.weight": "model-00001-of-00001.safetensors", "model.layers.0.block_sparse_moe.experts.5.w2.weight": "model-00001-of-00001.safetensors", "model.layers.0.block_sparse_moe.experts.6.w2.weight": "model-00001-of-00001.safetensors", "model.layers.0.block_sparse_moe.experts.7.w2.weight": "model-00001-of-00001.safetensors", "model.layers.0.block_sparse_moe.experts.8.w2.weight": "model-00001-of-00001.safetensors", "model.layers.0.block_sparse_moe.experts.9.w2.weight": "model-00001-of-00001.safetensors", "model.layers.0.block_sparse_moe.experts.10.w2.weight": "model-00001-of-00001.safetensors", "model.layers.0.block_sparse_moe.experts.11.w2.weight": "model-00001-of-00001.safetensors", "model.layers.0.block_sparse_moe.experts.12.w2.weight": "model-00001-of-00001.safetensors", "model.layers.0.block_sparse_moe.experts.13.w2.weight": "model-00001-of-00001.safetensors", "model.layers.0.block_sparse_moe.experts.14.w2.weight": "model-00001-of-00001.safetensors", "model.layers.0.block_sparse_moe.experts.15.w2.weight": "model-00001-of-00001.safetensors", "model.layers.0.block_sparse_moe.experts.16.w2.weight": "model-00001-of-00001.safetensors", "model.layers.0.block_sparse_moe.experts.17.w2.weight": "model-00001-of-00001.safetensors", "model.layers.0.block_sparse_moe.experts.18.w2.weight": "model-00001-of-00001.safetensors", "model.layers.0.block_sparse_moe.experts.19.w2.weight": "model-00001-of-00001.safetensors", "model.layers.0.block_sparse_moe.experts.20.w2.weight": "model-00001-of-00001.safetensors", "model.layers.0.block_sparse_moe.experts.21.w2.weight": "model-00001-of-00001.safetensors", "model.layers.0.block_sparse_moe.experts.22.w2.weight": "model-00001-of-00001.safetensors", "model.layers.0.block_sparse_moe.experts.23.w2.weight": "model-00001-of-00001.safetensors", "model.layers.0.block_sparse_moe.experts.24.w2.weight": "model-00001-of-00001.safetensors", "model.layers.0.block_sparse_moe.experts.25.w2.weight": "model-00001-of-00001.safetensors", "model.layers.0.block_sparse_moe.experts.26.w2.weight": "model-00001-of-00001.safetensors", "model.layers.0.block_sparse_moe.experts.27.w2.weight": "model-00001-of-00001.safetensors", "model.layers.0.block_sparse_moe.experts.28.w2.weight": "model-00001-of-00001.safetensors", "model.layers.0.block_sparse_moe.experts.29.w2.weight": "model-00001-of-00001.safetensors", "model.layers.0.block_sparse_moe.experts.30.w2.weight": "model-00001-of-00001.safetensors", "model.layers.0.block_sparse_moe.experts.31.w2.weight": "model-00001-of-00001.safetensors", "model.layers.1.block_sparse_moe.experts.0.w2.weight": "model-00001-of-00001.safetensors", "model.layers.1.block_sparse_moe.experts.1.w2.weight": "model-00001-of-00001.safetensors", "model.layers.1.block_sparse_moe.experts.2.w2.weight": "model-00001-of-00001.safetensors", "model.layers.1.block_sparse_moe.experts.3.w2.weight": "model-00001-of-00001.safetensors", "model.layers.1.block_sparse_moe.experts.4.w2.weight": "model-00001-of-00001.safetensors", "model.layers.1.block_sparse_moe.experts.5.w2.weight": "model-00001-of-00001.safetensors", "model.layers.1.block_sparse_moe.experts.6.w2.weight": "model-00001-of-00001.safetensors", "model.layers.1.block_sparse_moe.experts.7.w2.weight": "model-00001-of-00001.safetensors", "model.layers.1.block_sparse_moe.experts.8.w2.weight": "model-00001-of-00001.safetensors", "model.layers.1.block_sparse_moe.experts.9.w2.weight": "model-00001-of-00001.safetensors", "model.layers.1.block_sparse_moe.experts.10.w2.weight": "model-00001-of-00001.safetensors", "model.layers.1.block_sparse_moe.experts.11.w2.weight": "model-00001-of-00001.safetensors", "model.layers.1.block_sparse_moe.experts.12.w2.weight": "model-00001-of-00001.safetensors", "model.layers.1.block_sparse_moe.experts.13.w2.weight": "model-00001-of-00001.safetensors", "model.layers.1.block_sparse_moe.experts.14.w2.weight": "model-00001-of-00001.safetensors", "model.layers.1.block_sparse_moe.experts.15.w2.weight": "model-00001-of-00001.safetensors", "model.layers.1.block_sparse_moe.experts.16.w2.weight": "model-00001-of-00001.safetensors", "model.layers.1.block_sparse_moe.experts.17.w2.weight": "model-00001-of-00001.safetensors", "model.layers.1.block_sparse_moe.experts.18.w2.weight": "model-00001-of-00001.safetensors", "model.layers.1.block_sparse_moe.experts.19.w2.weight": "model-00001-of-00001.safetensors", "model.layers.1.block_sparse_moe.experts.20.w2.weight": "model-00001-of-00001.safetensors", "model.layers.1.block_sparse_moe.experts.21.w2.weight": "model-00001-of-00001.safetensors", "model.layers.1.block_sparse_moe.experts.22.w2.weight": "model-00001-of-00001.safetensors", "model.layers.1.block_sparse_moe.experts.23.w2.weight": "model-00001-of-00001.safetensors", "model.layers.1.block_sparse_moe.experts.24.w2.weight": "model-00001-of-00001.safetensors", "model.layers.1.block_sparse_moe.experts.25.w2.weight": "model-00001-of-00001.safetensors", "model.layers.1.block_sparse_moe.experts.26.w2.weight": "model-00001-of-00001.safetensors", "model.layers.1.block_sparse_moe.experts.27.w2.weight": "model-00001-of-00001.safetensors", "model.layers.1.block_sparse_moe.experts.28.w2.weight": "model-00001-of-00001.safetensors", "model.layers.1.block_sparse_moe.experts.29.w2.weight": "model-00001-of-00001.safetensors", "model.layers.1.block_sparse_moe.experts.30.w2.weight": "model-00001-of-00001.safetensors", "model.layers.1.block_sparse_moe.experts.31.w2.weight": "model-00001-of-00001.safetensors", "model.layers.2.block_sparse_moe.experts.0.w2.weight": "model-00001-of-00001.safetensors", "model.layers.2.block_sparse_moe.experts.1.w2.weight": "model-00001-of-00001.safetensors", "model.layers.2.block_sparse_moe.experts.2.w2.weight": "model-00001-of-00001.safetensors", "model.layers.2.block_sparse_moe.experts.3.w2.weight": "model-00001-of-00001.safetensors", "model.layers.2.block_sparse_moe.experts.4.w2.weight": "model-00001-of-00001.safetensors", "model.layers.2.block_sparse_moe.experts.5.w2.weight": "model-00001-of-00001.safetensors", "model.layers.2.block_sparse_moe.experts.6.w2.weight": "model-00001-of-00001.safetensors", "model.layers.2.block_sparse_moe.experts.7.w2.weight": "model-00001-of-00001.safetensors", "model.layers.2.block_sparse_moe.experts.8.w2.weight": "model-00001-of-00001.safetensors", "model.layers.2.block_sparse_moe.experts.9.w2.weight": "model-00001-of-00001.safetensors", "model.layers.2.block_sparse_moe.experts.10.w2.weight": "model-00001-of-00001.safetensors", "model.layers.2.block_sparse_moe.experts.11.w2.weight": "model-00001-of-00001.safetensors", "model.layers.2.block_sparse_moe.experts.12.w2.weight": "model-00001-of-00001.safetensors", "model.layers.2.block_sparse_moe.experts.13.w2.weight": "model-00001-of-00001.safetensors", "model.layers.2.block_sparse_moe.experts.14.w2.weight": "model-00001-of-00001.safetensors", "model.layers.2.block_sparse_moe.experts.15.w2.weight": "model-00001-of-00001.safetensors", "model.layers.2.block_sparse_moe.experts.16.w2.weight": "model-00001-of-00001.safetensors", "model.layers.2.block_sparse_moe.experts.17.w2.weight": "model-00001-of-00001.safetensors", "model.layers.2.block_sparse_moe.experts.18.w2.weight": "model-00001-of-00001.safetensors", "model.layers.2.block_sparse_moe.experts.19.w2.weight": "model-00001-of-00001.safetensors", "model.layers.2.block_sparse_moe.experts.20.w2.weight": "model-00001-of-00001.safetensors", "model.layers.2.block_sparse_moe.experts.21.w2.weight": "model-00001-of-00001.safetensors", "model.layers.2.block_sparse_moe.experts.22.w2.weight": "model-00001-of-00001.safetensors", "model.layers.2.block_sparse_moe.experts.23.w2.weight": "model-00001-of-00001.safetensors", "model.layers.2.block_sparse_moe.experts.24.w2.weight": "model-00001-of-00001.safetensors", "model.layers.2.block_sparse_moe.experts.25.w2.weight": "model-00001-of-00001.safetensors", "model.layers.2.block_sparse_moe.experts.26.w2.weight": "model-00001-of-00001.safetensors", "model.layers.2.block_sparse_moe.experts.27.w2.weight": "model-00001-of-00001.safetensors", "model.layers.2.block_sparse_moe.experts.28.w2.weight": "model-00001-of-00001.safetensors", "model.layers.2.block_sparse_moe.experts.29.w2.weight": "model-00001-of-00001.safetensors", "model.layers.2.block_sparse_moe.experts.30.w2.weight": "model-00001-of-00001.safetensors", "model.layers.2.block_sparse_moe.experts.31.w2.weight": "model-00001-of-00001.safetensors", "model.layers.3.block_sparse_moe.experts.0.w2.weight": "model-00001-of-00001.safetensors", "model.layers.3.block_sparse_moe.experts.1.w2.weight": "model-00001-of-00001.safetensors", "model.layers.3.block_sparse_moe.experts.2.w2.weight": "model-00001-of-00001.safetensors", "model.layers.3.block_sparse_moe.experts.3.w2.weight": "model-00001-of-00001.safetensors", "model.layers.3.block_sparse_moe.experts.4.w2.weight": "model-00001-of-00001.safetensors", "model.layers.3.block_sparse_moe.experts.5.w2.weight": "model-00001-of-00001.safetensors", "model.layers.3.block_sparse_moe.experts.6.w2.weight": "model-00001-of-00001.safetensors", "model.layers.3.block_sparse_moe.experts.7.w2.weight": "model-00001-of-00001.safetensors", "model.layers.3.block_sparse_moe.experts.8.w2.weight": "model-00001-of-00001.safetensors", "model.layers.3.block_sparse_moe.experts.9.w2.weight": "model-00001-of-00001.safetensors", "model.layers.3.block_sparse_moe.experts.10.w2.weight": "model-00001-of-00001.safetensors", "model.layers.3.block_sparse_moe.experts.11.w2.weight": "model-00001-of-00001.safetensors", "model.layers.3.block_sparse_moe.experts.12.w2.weight": "model-00001-of-00001.safetensors", "model.layers.3.block_sparse_moe.experts.13.w2.weight": "model-00001-of-00001.safetensors", "model.layers.3.block_sparse_moe.experts.14.w2.weight": "model-00001-of-00001.safetensors", "model.layers.3.block_sparse_moe.experts.15.w2.weight": "model-00001-of-00001.safetensors", "model.layers.3.block_sparse_moe.experts.16.w2.weight": "model-00001-of-00001.safetensors", "model.layers.3.block_sparse_moe.experts.17.w2.weight": "model-00001-of-00001.safetensors", "model.layers.3.block_sparse_moe.experts.18.w2.weight": "model-00001-of-00001.safetensors", "model.layers.3.block_sparse_moe.experts.19.w2.weight": "model-00001-of-00001.safetensors", "model.layers.3.block_sparse_moe.experts.20.w2.weight": "model-00001-of-00001.safetensors", "model.layers.3.block_sparse_moe.experts.21.w2.weight": "model-00001-of-00001.safetensors", "model.layers.3.block_sparse_moe.experts.22.w2.weight": "model-00001-of-00001.safetensors", "model.layers.3.block_sparse_moe.experts.23.w2.weight": "model-00001-of-00001.safetensors", "model.layers.3.block_sparse_moe.experts.24.w2.weight": "model-00001-of-00001.safetensors", "model.layers.3.block_sparse_moe.experts.25.w2.weight": "model-00001-of-00001.safetensors", "model.layers.3.block_sparse_moe.experts.26.w2.weight": "model-00001-of-00001.safetensors", "model.layers.3.block_sparse_moe.experts.27.w2.weight": "model-00001-of-00001.safetensors", "model.layers.3.block_sparse_moe.experts.28.w2.weight": "model-00001-of-00001.safetensors", "model.layers.3.block_sparse_moe.experts.29.w2.weight": "model-00001-of-00001.safetensors", "model.layers.3.block_sparse_moe.experts.30.w2.weight": "model-00001-of-00001.safetensors", "model.layers.3.block_sparse_moe.experts.31.w2.weight": "model-00001-of-00001.safetensors", "model.layers.4.block_sparse_moe.experts.0.w2.weight": "model-00001-of-00001.safetensors", "model.layers.4.block_sparse_moe.experts.1.w2.weight": "model-00001-of-00001.safetensors", "model.layers.4.block_sparse_moe.experts.2.w2.weight": "model-00001-of-00001.safetensors", "model.layers.4.block_sparse_moe.experts.3.w2.weight": "model-00001-of-00001.safetensors", "model.layers.4.block_sparse_moe.experts.4.w2.weight": "model-00001-of-00001.safetensors", "model.layers.4.block_sparse_moe.experts.5.w2.weight": "model-00001-of-00001.safetensors", "model.layers.4.block_sparse_moe.experts.6.w2.weight": "model-00001-of-00001.safetensors", "model.layers.4.block_sparse_moe.experts.7.w2.weight": "model-00001-of-00001.safetensors", "model.layers.4.block_sparse_moe.experts.8.w2.weight": "model-00001-of-00001.safetensors", "model.layers.4.block_sparse_moe.experts.9.w2.weight": "model-00001-of-00001.safetensors", "model.layers.4.block_sparse_moe.experts.10.w2.weight": "model-00001-of-00001.safetensors", "model.layers.4.block_sparse_moe.experts.11.w2.weight": "model-00001-of-00001.safetensors", "model.layers.4.block_sparse_moe.experts.12.w2.weight": "model-00001-of-00001.safetensors", "model.layers.4.block_sparse_moe.experts.13.w2.weight": "model-00001-of-00001.safetensors", "model.layers.4.block_sparse_moe.experts.14.w2.weight": "model-00001-of-00001.safetensors", "model.layers.4.block_sparse_moe.experts.15.w2.weight": "model-00001-of-00001.safetensors", "model.layers.4.block_sparse_moe.experts.16.w2.weight": "model-00001-of-00001.safetensors", "model.layers.4.block_sparse_moe.experts.17.w2.weight": "model-00001-of-00001.safetensors", "model.layers.4.block_sparse_moe.experts.18.w2.weight": "model-00001-of-00001.safetensors", "model.layers.4.block_sparse_moe.experts.19.w2.weight": "model-00001-of-00001.safetensors", "model.layers.4.block_sparse_moe.experts.20.w2.weight": "model-00001-of-00001.safetensors", "model.layers.4.block_sparse_moe.experts.21.w2.weight": "model-00001-of-00001.safetensors", "model.layers.4.block_sparse_moe.experts.22.w2.weight": "model-00001-of-00001.safetensors", "model.layers.4.block_sparse_moe.experts.23.w2.weight": "model-00001-of-00001.safetensors", "model.layers.4.block_sparse_moe.experts.24.w2.weight": "model-00001-of-00001.safetensors", "model.layers.4.block_sparse_moe.experts.25.w2.weight": "model-00001-of-00001.safetensors", "model.layers.4.block_sparse_moe.experts.26.w2.weight": "model-00001-of-00001.safetensors", "model.layers.4.block_sparse_moe.experts.27.w2.weight": "model-00001-of-00001.safetensors", "model.layers.4.block_sparse_moe.experts.28.w2.weight": "model-00001-of-00001.safetensors", "model.layers.4.block_sparse_moe.experts.29.w2.weight": "model-00001-of-00001.safetensors", "model.layers.4.block_sparse_moe.experts.30.w2.weight": "model-00001-of-00001.safetensors", "model.layers.4.block_sparse_moe.experts.31.w2.weight": "model-00001-of-00001.safetensors", "model.layers.5.block_sparse_moe.experts.0.w2.weight": "model-00001-of-00001.safetensors", "model.layers.5.block_sparse_moe.experts.1.w2.weight": "model-00001-of-00001.safetensors", "model.layers.5.block_sparse_moe.experts.2.w2.weight": "model-00001-of-00001.safetensors", "model.layers.5.block_sparse_moe.experts.3.w2.weight": "model-00001-of-00001.safetensors", "model.layers.5.block_sparse_moe.experts.4.w2.weight": "model-00001-of-00001.safetensors", "model.layers.5.block_sparse_moe.experts.5.w2.weight": "model-00001-of-00001.safetensors", "model.layers.5.block_sparse_moe.experts.6.w2.weight": "model-00001-of-00001.safetensors", "model.layers.5.block_sparse_moe.experts.7.w2.weight": "model-00001-of-00001.safetensors", "model.layers.5.block_sparse_moe.experts.8.w2.weight": "model-00001-of-00001.safetensors", "model.layers.5.block_sparse_moe.experts.9.w2.weight": "model-00001-of-00001.safetensors", "model.layers.5.block_sparse_moe.experts.10.w2.weight": "model-00001-of-00001.safetensors", "model.layers.5.block_sparse_moe.experts.11.w2.weight": "model-00001-of-00001.safetensors", "model.layers.5.block_sparse_moe.experts.12.w2.weight": "model-00001-of-00001.safetensors", "model.layers.5.block_sparse_moe.experts.13.w2.weight": "model-00001-of-00001.safetensors", "model.layers.5.block_sparse_moe.experts.14.w2.weight": "model-00001-of-00001.safetensors", "model.layers.5.block_sparse_moe.experts.15.w2.weight": "model-00001-of-00001.safetensors", "model.layers.5.block_sparse_moe.experts.16.w2.weight": "model-00001-of-00001.safetensors", "model.layers.5.block_sparse_moe.experts.17.w2.weight": "model-00001-of-00001.safetensors", "model.layers.5.block_sparse_moe.experts.18.w2.weight": "model-00001-of-00001.safetensors", "model.layers.5.block_sparse_moe.experts.19.w2.weight": "model-00001-of-00001.safetensors", "model.layers.5.block_sparse_moe.experts.20.w2.weight": "model-00001-of-00001.safetensors", "model.layers.5.block_sparse_moe.experts.21.w2.weight": "model-00001-of-00001.safetensors", "model.layers.5.block_sparse_moe.experts.22.w2.weight": "model-00001-of-00001.safetensors", "model.layers.5.block_sparse_moe.experts.23.w2.weight": "model-00001-of-00001.safetensors", "model.layers.5.block_sparse_moe.experts.24.w2.weight": "model-00001-of-00001.safetensors", "model.layers.5.block_sparse_moe.experts.25.w2.weight": "model-00001-of-00001.safetensors", "model.layers.5.block_sparse_moe.experts.26.w2.weight": "model-00001-of-00001.safetensors", "model.layers.5.block_sparse_moe.experts.27.w2.weight": "model-00001-of-00001.safetensors", "model.layers.5.block_sparse_moe.experts.28.w2.weight": "model-00001-of-00001.safetensors", "model.layers.5.block_sparse_moe.experts.29.w2.weight": "model-00001-of-00001.safetensors", "model.layers.5.block_sparse_moe.experts.30.w2.weight": "model-00001-of-00001.safetensors", "model.layers.5.block_sparse_moe.experts.31.w2.weight": "model-00001-of-00001.safetensors", "model.layers.0.block_sparse_moe.experts.0.w1.weight": "model-00001-of-00001.safetensors", "model.layers.0.block_sparse_moe.experts.1.w1.weight": "model-00001-of-00001.safetensors", "model.layers.0.block_sparse_moe.experts.2.w1.weight": "model-00001-of-00001.safetensors", "model.layers.0.block_sparse_moe.experts.3.w1.weight": "model-00001-of-00001.safetensors", "model.layers.0.block_sparse_moe.experts.4.w1.weight": "model-00001-of-00001.safetensors", "model.layers.0.block_sparse_moe.experts.5.w1.weight": "model-00001-of-00001.safetensors", "model.layers.0.block_sparse_moe.experts.6.w1.weight": "model-00001-of-00001.safetensors", "model.layers.0.block_sparse_moe.experts.7.w1.weight": "model-00001-of-00001.safetensors", "model.layers.0.block_sparse_moe.experts.8.w1.weight": "model-00001-of-00001.safetensors", "model.layers.0.block_sparse_moe.experts.9.w1.weight": "model-00001-of-00001.safetensors", "model.layers.0.block_sparse_moe.experts.10.w1.weight": "model-00001-of-00001.safetensors", "model.layers.0.block_sparse_moe.experts.11.w1.weight": "model-00001-of-00001.safetensors", "model.layers.0.block_sparse_moe.experts.12.w1.weight": "model-00001-of-00001.safetensors", "model.layers.0.block_sparse_moe.experts.13.w1.weight": "model-00001-of-00001.safetensors", "model.layers.0.block_sparse_moe.experts.14.w1.weight": "model-00001-of-00001.safetensors", "model.layers.0.block_sparse_moe.experts.15.w1.weight": "model-00001-of-00001.safetensors", "model.layers.0.block_sparse_moe.experts.16.w1.weight": "model-00001-of-00001.safetensors", "model.layers.0.block_sparse_moe.experts.17.w1.weight": "model-00001-of-00001.safetensors", "model.layers.0.block_sparse_moe.experts.18.w1.weight": "model-00001-of-00001.safetensors", "model.layers.0.block_sparse_moe.experts.19.w1.weight": "model-00001-of-00001.safetensors", "model.layers.0.block_sparse_moe.experts.20.w1.weight": "model-00001-of-00001.safetensors", "model.layers.0.block_sparse_moe.experts.21.w1.weight": "model-00001-of-00001.safetensors", "model.layers.0.block_sparse_moe.experts.22.w1.weight": "model-00001-of-00001.safetensors", "model.layers.0.block_sparse_moe.experts.23.w1.weight": "model-00001-of-00001.safetensors", "model.layers.0.block_sparse_moe.experts.24.w1.weight": "model-00001-of-00001.safetensors", "model.layers.0.block_sparse_moe.experts.25.w1.weight": "model-00001-of-00001.safetensors", "model.layers.0.block_sparse_moe.experts.26.w1.weight": "model-00001-of-00001.safetensors", "model.layers.0.block_sparse_moe.experts.27.w1.weight": "model-00001-of-00001.safetensors", "model.layers.0.block_sparse_moe.experts.28.w1.weight": "model-00001-of-00001.safetensors", "model.layers.0.block_sparse_moe.experts.29.w1.weight": "model-00001-of-00001.safetensors", "model.layers.0.block_sparse_moe.experts.30.w1.weight": "model-00001-of-00001.safetensors", "model.layers.0.block_sparse_moe.experts.31.w1.weight": "model-00001-of-00001.safetensors", "model.layers.1.block_sparse_moe.experts.0.w1.weight": "model-00001-of-00001.safetensors", "model.layers.1.block_sparse_moe.experts.1.w1.weight": "model-00001-of-00001.safetensors", "model.layers.1.block_sparse_moe.experts.2.w1.weight": "model-00001-of-00001.safetensors", "model.layers.1.block_sparse_moe.experts.3.w1.weight": "model-00001-of-00001.safetensors", "model.layers.1.block_sparse_moe.experts.4.w1.weight": "model-00001-of-00001.safetensors", "model.layers.1.block_sparse_moe.experts.5.w1.weight": "model-00001-of-00001.safetensors", "model.layers.1.block_sparse_moe.experts.6.w1.weight": "model-00001-of-00001.safetensors", "model.layers.1.block_sparse_moe.experts.7.w1.weight": "model-00001-of-00001.safetensors", "model.layers.1.block_sparse_moe.experts.8.w1.weight": "model-00001-of-00001.safetensors", "model.layers.1.block_sparse_moe.experts.9.w1.weight": "model-00001-of-00001.safetensors", "model.layers.1.block_sparse_moe.experts.10.w1.weight": "model-00001-of-00001.safetensors", "model.layers.1.block_sparse_moe.experts.11.w1.weight": "model-00001-of-00001.safetensors", "model.layers.1.block_sparse_moe.experts.12.w1.weight": "model-00001-of-00001.safetensors", "model.layers.1.block_sparse_moe.experts.13.w1.weight": "model-00001-of-00001.safetensors", "model.layers.1.block_sparse_moe.experts.14.w1.weight": "model-00001-of-00001.safetensors", "model.layers.1.block_sparse_moe.experts.15.w1.weight": "model-00001-of-00001.safetensors", "model.layers.1.block_sparse_moe.experts.16.w1.weight": "model-00001-of-00001.safetensors", "model.layers.1.block_sparse_moe.experts.17.w1.weight": "model-00001-of-00001.safetensors", "model.layers.1.block_sparse_moe.experts.18.w1.weight": "model-00001-of-00001.safetensors", "model.layers.1.block_sparse_moe.experts.19.w1.weight": "model-00001-of-00001.safetensors", "model.layers.1.block_sparse_moe.experts.20.w1.weight": "model-00001-of-00001.safetensors", "model.layers.1.block_sparse_moe.experts.21.w1.weight": "model-00001-of-00001.safetensors", "model.layers.1.block_sparse_moe.experts.22.w1.weight": "model-00001-of-00001.safetensors", "model.layers.1.block_sparse_moe.experts.23.w1.weight": "model-00001-of-00001.safetensors", "model.layers.1.block_sparse_moe.experts.24.w1.weight": "model-00001-of-00001.safetensors", "model.layers.1.block_sparse_moe.experts.25.w1.weight": "model-00001-of-00001.safetensors", "model.layers.1.block_sparse_moe.experts.26.w1.weight": "model-00001-of-00001.safetensors", "model.layers.1.block_sparse_moe.experts.27.w1.weight": "model-00001-of-00001.safetensors", "model.layers.1.block_sparse_moe.experts.28.w1.weight": "model-00001-of-00001.safetensors", "model.layers.1.block_sparse_moe.experts.29.w1.weight": "model-00001-of-00001.safetensors", "model.layers.1.block_sparse_moe.experts.30.w1.weight": "model-00001-of-00001.safetensors", "model.layers.1.block_sparse_moe.experts.31.w1.weight": "model-00001-of-00001.safetensors", "model.layers.2.block_sparse_moe.experts.0.w1.weight": "model-00001-of-00001.safetensors", "model.layers.2.block_sparse_moe.experts.1.w1.weight": "model-00001-of-00001.safetensors", "model.layers.2.block_sparse_moe.experts.2.w1.weight": "model-00001-of-00001.safetensors", "model.layers.2.block_sparse_moe.experts.3.w1.weight": "model-00001-of-00001.safetensors", "model.layers.2.block_sparse_moe.experts.4.w1.weight": "model-00001-of-00001.safetensors", "model.layers.2.block_sparse_moe.experts.5.w1.weight": "model-00001-of-00001.safetensors", "model.layers.2.block_sparse_moe.experts.6.w1.weight": "model-00001-of-00001.safetensors", "model.layers.2.block_sparse_moe.experts.7.w1.weight": "model-00001-of-00001.safetensors", "model.layers.2.block_sparse_moe.experts.8.w1.weight": "model-00001-of-00001.safetensors", "model.layers.2.block_sparse_moe.experts.9.w1.weight": "model-00001-of-00001.safetensors", "model.layers.2.block_sparse_moe.experts.10.w1.weight": "model-00001-of-00001.safetensors", "model.layers.2.block_sparse_moe.experts.11.w1.weight": "model-00001-of-00001.safetensors", "model.layers.2.block_sparse_moe.experts.12.w1.weight": "model-00001-of-00001.safetensors", "model.layers.2.block_sparse_moe.experts.13.w1.weight": "model-00001-of-00001.safetensors", "model.layers.2.block_sparse_moe.experts.14.w1.weight": "model-00001-of-00001.safetensors", "model.layers.2.block_sparse_moe.experts.15.w1.weight": "model-00001-of-00001.safetensors", "model.layers.2.block_sparse_moe.experts.16.w1.weight": "model-00001-of-00001.safetensors", "model.layers.2.block_sparse_moe.experts.17.w1.weight": "model-00001-of-00001.safetensors", "model.layers.2.block_sparse_moe.experts.18.w1.weight": "model-00001-of-00001.safetensors", "model.layers.2.block_sparse_moe.experts.19.w1.weight": "model-00001-of-00001.safetensors", "model.layers.2.block_sparse_moe.experts.20.w1.weight": "model-00001-of-00001.safetensors", "model.layers.2.block_sparse_moe.experts.21.w1.weight": "model-00001-of-00001.safetensors", "model.layers.2.block_sparse_moe.experts.22.w1.weight": "model-00001-of-00001.safetensors", "model.layers.2.block_sparse_moe.experts.23.w1.weight": "model-00001-of-00001.safetensors", "model.layers.2.block_sparse_moe.experts.24.w1.weight": "model-00001-of-00001.safetensors", "model.layers.2.block_sparse_moe.experts.25.w1.weight": "model-00001-of-00001.safetensors", "model.layers.2.block_sparse_moe.experts.26.w1.weight": "model-00001-of-00001.safetensors", "model.layers.2.block_sparse_moe.experts.27.w1.weight": "model-00001-of-00001.safetensors", "model.layers.2.block_sparse_moe.experts.28.w1.weight": "model-00001-of-00001.safetensors", "model.layers.2.block_sparse_moe.experts.29.w1.weight": "model-00001-of-00001.safetensors", "model.layers.2.block_sparse_moe.experts.30.w1.weight": "model-00001-of-00001.safetensors", "model.layers.2.block_sparse_moe.experts.31.w1.weight": "model-00001-of-00001.safetensors", "model.layers.3.block_sparse_moe.experts.0.w1.weight": "model-00001-of-00001.safetensors", "model.layers.3.block_sparse_moe.experts.1.w1.weight": "model-00001-of-00001.safetensors", "model.layers.3.block_sparse_moe.experts.2.w1.weight": "model-00001-of-00001.safetensors", "model.layers.3.block_sparse_moe.experts.3.w1.weight": "model-00001-of-00001.safetensors", "model.layers.3.block_sparse_moe.experts.4.w1.weight": "model-00001-of-00001.safetensors", "model.layers.3.block_sparse_moe.experts.5.w1.weight": "model-00001-of-00001.safetensors", "model.layers.3.block_sparse_moe.experts.6.w1.weight": "model-00001-of-00001.safetensors", "model.layers.3.block_sparse_moe.experts.7.w1.weight": "model-00001-of-00001.safetensors", "model.layers.3.block_sparse_moe.experts.8.w1.weight": "model-00001-of-00001.safetensors", "model.layers.3.block_sparse_moe.experts.9.w1.weight": "model-00001-of-00001.safetensors", "model.layers.3.block_sparse_moe.experts.10.w1.weight": "model-00001-of-00001.safetensors", "model.layers.3.block_sparse_moe.experts.11.w1.weight": "model-00001-of-00001.safetensors", "model.layers.3.block_sparse_moe.experts.12.w1.weight": "model-00001-of-00001.safetensors", "model.layers.3.block_sparse_moe.experts.13.w1.weight": "model-00001-of-00001.safetensors", "model.layers.3.block_sparse_moe.experts.14.w1.weight": "model-00001-of-00001.safetensors", "model.layers.3.block_sparse_moe.experts.15.w1.weight": "model-00001-of-00001.safetensors", "model.layers.3.block_sparse_moe.experts.16.w1.weight": "model-00001-of-00001.safetensors", "model.layers.3.block_sparse_moe.experts.17.w1.weight": "model-00001-of-00001.safetensors", "model.layers.3.block_sparse_moe.experts.18.w1.weight": "model-00001-of-00001.safetensors", "model.layers.3.block_sparse_moe.experts.19.w1.weight": "model-00001-of-00001.safetensors", "model.layers.3.block_sparse_moe.experts.20.w1.weight": "model-00001-of-00001.safetensors", "model.layers.3.block_sparse_moe.experts.21.w1.weight": "model-00001-of-00001.safetensors", "model.layers.3.block_sparse_moe.experts.22.w1.weight": "model-00001-of-00001.safetensors", "model.layers.3.block_sparse_moe.experts.23.w1.weight": "model-00001-of-00001.safetensors", "model.layers.3.block_sparse_moe.experts.24.w1.weight": "model-00001-of-00001.safetensors", "model.layers.3.block_sparse_moe.experts.25.w1.weight": "model-00001-of-00001.safetensors", "model.layers.3.block_sparse_moe.experts.26.w1.weight": "model-00001-of-00001.safetensors", "model.layers.3.block_sparse_moe.experts.27.w1.weight": "model-00001-of-00001.safetensors", "model.layers.3.block_sparse_moe.experts.28.w1.weight": "model-00001-of-00001.safetensors", "model.layers.3.block_sparse_moe.experts.29.w1.weight": "model-00001-of-00001.safetensors", "model.layers.3.block_sparse_moe.experts.30.w1.weight": "model-00001-of-00001.safetensors", "model.layers.3.block_sparse_moe.experts.31.w1.weight": "model-00001-of-00001.safetensors", "model.layers.4.block_sparse_moe.experts.0.w1.weight": "model-00001-of-00001.safetensors", "model.layers.4.block_sparse_moe.experts.1.w1.weight": "model-00001-of-00001.safetensors", "model.layers.4.block_sparse_moe.experts.2.w1.weight": "model-00001-of-00001.safetensors", "model.layers.4.block_sparse_moe.experts.3.w1.weight": "model-00001-of-00001.safetensors", "model.layers.4.block_sparse_moe.experts.4.w1.weight": "model-00001-of-00001.safetensors", "model.layers.4.block_sparse_moe.experts.5.w1.weight": "model-00001-of-00001.safetensors", "model.layers.4.block_sparse_moe.experts.6.w1.weight": "model-00001-of-00001.safetensors", "model.layers.4.block_sparse_moe.experts.7.w1.weight": "model-00001-of-00001.safetensors", "model.layers.4.block_sparse_moe.experts.8.w1.weight": "model-00001-of-00001.safetensors", "model.layers.4.block_sparse_moe.experts.9.w1.weight": "model-00001-of-00001.safetensors", "model.layers.4.block_sparse_moe.experts.10.w1.weight": "model-00001-of-00001.safetensors", "model.layers.4.block_sparse_moe.experts.11.w1.weight": "model-00001-of-00001.safetensors", "model.layers.4.block_sparse_moe.experts.12.w1.weight": "model-00001-of-00001.safetensors", "model.layers.4.block_sparse_moe.experts.13.w1.weight": "model-00001-of-00001.safetensors", "model.layers.4.block_sparse_moe.experts.14.w1.weight": "model-00001-of-00001.safetensors", "model.layers.4.block_sparse_moe.experts.15.w1.weight": "model-00001-of-00001.safetensors", "model.layers.4.block_sparse_moe.experts.16.w1.weight": "model-00001-of-00001.safetensors", "model.layers.4.block_sparse_moe.experts.17.w1.weight": "model-00001-of-00001.safetensors", "model.layers.4.block_sparse_moe.experts.18.w1.weight": "model-00001-of-00001.safetensors", "model.layers.4.block_sparse_moe.experts.19.w1.weight": "model-00001-of-00001.safetensors", "model.layers.4.block_sparse_moe.experts.20.w1.weight": "model-00001-of-00001.safetensors", "model.layers.4.block_sparse_moe.experts.21.w1.weight": "model-00001-of-00001.safetensors", "model.layers.4.block_sparse_moe.experts.22.w1.weight": "model-00001-of-00001.safetensors", "model.layers.4.block_sparse_moe.experts.23.w1.weight": "model-00001-of-00001.safetensors", "model.layers.4.block_sparse_moe.experts.24.w1.weight": "model-00001-of-00001.safetensors", "model.layers.4.block_sparse_moe.experts.25.w1.weight": "model-00001-of-00001.safetensors", "model.layers.4.block_sparse_moe.experts.26.w1.weight": "model-00001-of-00001.safetensors", "model.layers.4.block_sparse_moe.experts.27.w1.weight": "model-00001-of-00001.safetensors", "model.layers.4.block_sparse_moe.experts.28.w1.weight": "model-00001-of-00001.safetensors", "model.layers.4.block_sparse_moe.experts.29.w1.weight": "model-00001-of-00001.safetensors", "model.layers.4.block_sparse_moe.experts.30.w1.weight": "model-00001-of-00001.safetensors", "model.layers.4.block_sparse_moe.experts.31.w1.weight": "model-00001-of-00001.safetensors", "model.layers.5.block_sparse_moe.experts.0.w1.weight": "model-00001-of-00001.safetensors", "model.layers.5.block_sparse_moe.experts.1.w1.weight": "model-00001-of-00001.safetensors", "model.layers.5.block_sparse_moe.experts.2.w1.weight": "model-00001-of-00001.safetensors", "model.layers.5.block_sparse_moe.experts.3.w1.weight": "model-00001-of-00001.safetensors", "model.layers.5.block_sparse_moe.experts.4.w1.weight": "model-00001-of-00001.safetensors", "model.layers.5.block_sparse_moe.experts.5.w1.weight": "model-00001-of-00001.safetensors", "model.layers.5.block_sparse_moe.experts.6.w1.weight": "model-00001-of-00001.safetensors", "model.layers.5.block_sparse_moe.experts.7.w1.weight": "model-00001-of-00001.safetensors", "model.layers.5.block_sparse_moe.experts.8.w1.weight": "model-00001-of-00001.safetensors", "model.layers.5.block_sparse_moe.experts.9.w1.weight": "model-00001-of-00001.safetensors", "model.layers.5.block_sparse_moe.experts.10.w1.weight": "model-00001-of-00001.safetensors", "model.layers.5.block_sparse_moe.experts.11.w1.weight": "model-00001-of-00001.safetensors", "model.layers.5.block_sparse_moe.experts.12.w1.weight": "model-00001-of-00001.safetensors", "model.layers.5.block_sparse_moe.experts.13.w1.weight": "model-00001-of-00001.safetensors", "model.layers.5.block_sparse_moe.experts.14.w1.weight": "model-00001-of-00001.safetensors", "model.layers.5.block_sparse_moe.experts.15.w1.weight": "model-00001-of-00001.safetensors", "model.layers.5.block_sparse_moe.experts.16.w1.weight": "model-00001-of-00001.safetensors", "model.layers.5.block_sparse_moe.experts.17.w1.weight": "model-00001-of-00001.safetensors", "model.layers.5.block_sparse_moe.experts.18.w1.weight": "model-00001-of-00001.safetensors", "model.layers.5.block_sparse_moe.experts.19.w1.weight": "model-00001-of-00001.safetensors", "model.layers.5.block_sparse_moe.experts.20.w1.weight": "model-00001-of-00001.safetensors", "model.layers.5.block_sparse_moe.experts.21.w1.weight": "model-00001-of-00001.safetensors", "model.layers.5.block_sparse_moe.experts.22.w1.weight": "model-00001-of-00001.safetensors", "model.layers.5.block_sparse_moe.experts.23.w1.weight": "model-00001-of-00001.safetensors", "model.layers.5.block_sparse_moe.experts.24.w1.weight": "model-00001-of-00001.safetensors", "model.layers.5.block_sparse_moe.experts.25.w1.weight": "model-00001-of-00001.safetensors", "model.layers.5.block_sparse_moe.experts.26.w1.weight": "model-00001-of-00001.safetensors", "model.layers.5.block_sparse_moe.experts.27.w1.weight": "model-00001-of-00001.safetensors", "model.layers.5.block_sparse_moe.experts.28.w1.weight": "model-00001-of-00001.safetensors", "model.layers.5.block_sparse_moe.experts.29.w1.weight": "model-00001-of-00001.safetensors", "model.layers.5.block_sparse_moe.experts.30.w1.weight": "model-00001-of-00001.safetensors", "model.layers.5.block_sparse_moe.experts.31.w1.weight": "model-00001-of-00001.safetensors", "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00001.safetensors", "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00001.safetensors", "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00001.safetensors", "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00001.safetensors", "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00001.safetensors", "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00001.safetensors", "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00001.safetensors", "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00001.safetensors", "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00001.safetensors", "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00001.safetensors", "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00001.safetensors", "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00001.safetensors", "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00001.safetensors", "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00001.safetensors", "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00001.safetensors", "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00001.safetensors", "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00001.safetensors", "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00001.safetensors", "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00001.safetensors", "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00001.safetensors", "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00001.safetensors", "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00001.safetensors", "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00001.safetensors", "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00001.safetensors", "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00001.safetensors", "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00001.safetensors", "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00001.safetensors", "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00001.safetensors", "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00001.safetensors", "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00001.safetensors", "model.layers.0.block_sparse_moe.gate.weight": "model-00001-of-00001.safetensors", "model.layers.1.block_sparse_moe.gate.weight": "model-00001-of-00001.safetensors", "model.layers.2.block_sparse_moe.gate.weight": "model-00001-of-00001.safetensors", "model.layers.3.block_sparse_moe.gate.weight": "model-00001-of-00001.safetensors", "model.layers.4.block_sparse_moe.gate.weight": "model-00001-of-00001.safetensors", "model.layers.5.block_sparse_moe.gate.weight": "model-00001-of-00001.safetensors"}}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "</s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": "<s>",
|
17 |
+
"unk_token": {
|
18 |
+
"content": "<unk>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
}
|
24 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
|
3 |
+
size 499723
|
tokenizer_config.json
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": true,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"0": {
|
6 |
+
"content": "<unk>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"1": {
|
14 |
+
"content": "<s>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"2": {
|
22 |
+
"content": "</s>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
}
|
29 |
+
},
|
30 |
+
"bos_token": "<s>",
|
31 |
+
"chat_template": "{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
|
32 |
+
"clean_up_tokenization_spaces": false,
|
33 |
+
"eos_token": "</s>",
|
34 |
+
"legacy": false,
|
35 |
+
"model_max_length": 1000000000000000019884624838656,
|
36 |
+
"pad_token": "<s>",
|
37 |
+
"padding_side": "left",
|
38 |
+
"sp_model_kwargs": {},
|
39 |
+
"spaces_between_special_tokens": false,
|
40 |
+
"tokenizer_class": "LlamaTokenizer",
|
41 |
+
"unk_token": "<unk>",
|
42 |
+
"use_default_system_prompt": false
|
43 |
+
}
|