GlycerinLOL's picture
Model save
cc096d5 verified
metadata
base_model: google/pegasus-xsum
tags:
  - generated_from_trainer
metrics:
  - rouge
  - precision
  - recall
  - f1
model-index:
  - name: LLM_Teached_Pegasus_50k
    results: []

LLM_Teached_Pegasus_50k

This model is a fine-tuned version of google/pegasus-xsum on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.5934
  • Rouge1: 0.4774
  • Rouge2: 0.2259
  • Rougel: 0.3926
  • Rougelsum: 0.3926
  • Gen Len: 26.5556
  • Precision: 0.9117
  • Recall: 0.9103
  • F1: 0.9108

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step F1 Gen Len Validation Loss Precision Recall Rouge1 Rouge2 Rougel Rougelsum
No log 1.0 390 0.9034 26.2967 1.8258 0.9049 0.9023 0.4338 0.1906 0.3496 0.3498
2.1621 2.0 781 0.9054 26.2727 1.7537 0.9068 0.9044 0.4449 0.2005 0.3633 0.3633
1.8794 3.0 1172 0.9066 26.4345 1.7268 0.9078 0.9058 0.4518 0.2061 0.3696 0.3695
1.8271 4.0 1560 0.9069 26.3971 1.7157 0.9082 0.906 0.4539 0.2075 0.3716 0.3714
1.8271 5.0 1951 0.9074 26.3015 1.7033 0.9087 0.9065 0.4561 0.2098 0.3735 0.3734
1.8067 6.0 2340 0.9077 26.4389 1.6897 0.9089 0.9069 0.4592 0.2114 0.3762 0.3759
1.7833 7.0 2731 0.9079 26.3745 1.6819 0.9092 0.9071 0.4598 0.2115 0.3764 0.376
1.7683 8.0 3120 0.9083 26.6204 1.6763 0.9094 0.9076 0.4621 0.2133 0.3791 0.3789
1.7559 9.0 3511 0.9086 26.424 1.6662 0.9098 0.9078 0.4632 0.215 0.38 0.3799
1.7559 10.0 3902 0.9089 26.5425 1.6594 0.9099 0.9082 0.4651 0.2168 0.3812 0.3812
1.7357 11.0 4293 0.9091 26.6051 1.6555 0.91 0.9086 0.4663 0.2178 0.3824 0.3823
1.7297 12.0 4680 0.9092 26.4393 1.6508 0.9103 0.9084 0.4668 0.2175 0.3823 0.3822
1.7165 13.0 5071 0.9094 26.6385 1.6451 0.9103 0.9089 0.4687 0.2191 0.3834 0.3834
1.7165 14.0 5462 0.9095 26.4156 1.6405 0.9106 0.9087 0.4691 0.2193 0.3845 0.3844
1.7068 15.0 5853 0.9097 26.4571 1.6383 0.9108 0.9089 0.4699 0.2204 0.3853 0.3853
1.7004 16.0 6240 0.9097 26.4247 1.6346 0.9108 0.9089 0.4703 0.2204 0.385 0.385
1.6923 17.0 6631 0.9099 26.4436 1.6305 0.911 0.9091 0.4706 0.221 0.3855 0.3856
1.6839 18.0 7022 0.9098 26.612 1.6285 0.9106 0.9094 0.4712 0.2215 0.3862 0.3864
1.6839 19.0 7413 0.9099 26.5291 1.6263 0.9108 0.9093 0.4709 0.2217 0.3862 0.3864
1.6743 20.0 7800 0.91 26.4251 1.6205 0.9111 0.9092 0.4727 0.2223 0.3876 0.3876
1.6692 21.0 8191 0.9102 26.7484 1.6153 0.911 0.9098 0.4737 0.2229 0.388 0.388
1.6568 22.0 8582 0.9103 26.532 1.6104 0.9113 0.9096 0.4733 0.2221 0.3885 0.3886
1.6568 23.0 8973 0.9104 26.82 1.6056 0.911 0.9101 0.4756 0.2236 0.3891 0.3891
1.6418 24.0 9360 1.6021 0.476 0.2246 0.3903 0.3903 26.5513 0.9115 0.91 0.9106
1.6319 25.0 9751 1.5995 0.4751 0.2245 0.3905 0.3905 26.4375 0.9116 0.9098 0.9105
1.624 26.0 10142 1.5974 0.4756 0.2247 0.3903 0.3904 26.6018 0.9116 0.9101 0.9107
1.6184 27.0 10533 1.5953 0.4747 0.2231 0.3899 0.3899 26.4833 0.9116 0.9099 0.9106
1.6184 28.0 10923 1.5943 0.4758 0.2243 0.3907 0.3908 26.5604 0.9116 0.9102 0.9107
1.6126 29.0 11314 1.5936 0.4776 0.226 0.3926 0.3926 26.5775 0.9117 0.9103 0.9108
1.6148 29.99 11700 1.5934 0.4774 0.2259 0.3926 0.3926 26.5556 0.9117 0.9103 0.9108

Framework versions

  • Transformers 4.36.0
  • Pytorch 2.0.1+cu117
  • Datasets 2.14.5
  • Tokenizers 0.15.0