|
import scipy.sparse |
|
from rfdiffusion.chemical import * |
|
from rfdiffusion.scoring import * |
|
|
|
|
|
def generate_Cbeta(N, Ca, C): |
|
|
|
b = Ca - N |
|
c = C - Ca |
|
a = torch.cross(b, c, dim=-1) |
|
|
|
Cb = -0.58273431*a + 0.56802827*b - 0.54067466*c + Ca |
|
|
|
|
|
|
|
return Cb |
|
|
|
|
|
def th_ang_v(ab, bc, eps: float = 1e-8): |
|
def th_norm(x, eps: float = 1e-8): |
|
return x.square().sum(-1, keepdim=True).add(eps).sqrt() |
|
|
|
def th_N(x, alpha: float = 0): |
|
return x / th_norm(x).add(alpha) |
|
|
|
ab, bc = th_N(ab), th_N(bc) |
|
cos_angle = torch.clamp((ab * bc).sum(-1), -1, 1) |
|
sin_angle = torch.sqrt(1 - cos_angle.square() + eps) |
|
dih = torch.stack((cos_angle, sin_angle), -1) |
|
return dih |
|
|
|
|
|
def th_dih_v(ab, bc, cd): |
|
def th_cross(a, b): |
|
a, b = torch.broadcast_tensors(a, b) |
|
return torch.cross(a, b, dim=-1) |
|
|
|
def th_norm(x, eps: float = 1e-8): |
|
return x.square().sum(-1, keepdim=True).add(eps).sqrt() |
|
|
|
def th_N(x, alpha: float = 0): |
|
return x / th_norm(x).add(alpha) |
|
|
|
ab, bc, cd = th_N(ab), th_N(bc), th_N(cd) |
|
n1 = th_N(th_cross(ab, bc)) |
|
n2 = th_N(th_cross(bc, cd)) |
|
sin_angle = (th_cross(n1, bc) * n2).sum(-1) |
|
cos_angle = (n1 * n2).sum(-1) |
|
dih = torch.stack((cos_angle, sin_angle), -1) |
|
return dih |
|
|
|
|
|
def th_dih(a, b, c, d): |
|
return th_dih_v(a - b, b - c, c - d) |
|
|
|
|
|
|
|
|
|
def rigid_from_3_points(N, Ca, C, non_ideal=False, eps=1e-8): |
|
|
|
|
|
B, L = N.shape[:2] |
|
|
|
v1 = C - Ca |
|
v2 = N - Ca |
|
e1 = v1 / (torch.norm(v1, dim=-1, keepdim=True) + eps) |
|
u2 = v2 - (torch.einsum("bli, bli -> bl", e1, v2)[..., None] * e1) |
|
e2 = u2 / (torch.norm(u2, dim=-1, keepdim=True) + eps) |
|
e3 = torch.cross(e1, e2, dim=-1) |
|
R = torch.cat( |
|
[e1[..., None], e2[..., None], e3[..., None]], axis=-1 |
|
) |
|
|
|
if non_ideal: |
|
v2 = v2 / (torch.norm(v2, dim=-1, keepdim=True) + eps) |
|
cosref = torch.sum(e1 * v2, dim=-1) |
|
costgt = cos_ideal_NCAC.item() |
|
cos2del = torch.clamp( |
|
cosref * costgt |
|
+ torch.sqrt((1 - cosref * cosref) * (1 - costgt * costgt) + eps), |
|
min=-1.0, |
|
max=1.0, |
|
) |
|
cosdel = torch.sqrt(0.5 * (1 + cos2del) + eps) |
|
sindel = torch.sign(costgt - cosref) * torch.sqrt(1 - 0.5 * (1 + cos2del) + eps) |
|
Rp = torch.eye(3, device=N.device).repeat(B, L, 1, 1) |
|
Rp[:, :, 0, 0] = cosdel |
|
Rp[:, :, 0, 1] = -sindel |
|
Rp[:, :, 1, 0] = sindel |
|
Rp[:, :, 1, 1] = cosdel |
|
|
|
R = torch.einsum("blij,bljk->blik", R, Rp) |
|
|
|
return R, Ca |
|
|
|
|
|
def get_tor_mask(seq, torsion_indices, mask_in=None): |
|
B, L = seq.shape[:2] |
|
tors_mask = torch.ones((B, L, 10), dtype=torch.bool, device=seq.device) |
|
tors_mask[..., 3:7] = torsion_indices[seq, :, -1] > 0 |
|
tors_mask[:, 0, 1] = False |
|
tors_mask[:, -1, 0] = False |
|
|
|
|
|
tors_mask[:, :, 7] = seq != aa2num["GLY"] |
|
tors_mask[:, :, 8] = seq != aa2num["GLY"] |
|
tors_mask[:, :, 9] = torch.logical_and(seq != aa2num["GLY"], seq != aa2num["ALA"]) |
|
tors_mask[:, :, 9] = torch.logical_and(tors_mask[:, :, 9], seq != aa2num["UNK"]) |
|
tors_mask[:, :, 9] = torch.logical_and(tors_mask[:, :, 9], seq != aa2num["MAS"]) |
|
|
|
if mask_in != None: |
|
|
|
|
|
ti0 = torch.gather(mask_in, 2, torsion_indices[seq, :, 0]) |
|
ti1 = torch.gather(mask_in, 2, torsion_indices[seq, :, 1]) |
|
ti2 = torch.gather(mask_in, 2, torsion_indices[seq, :, 2]) |
|
ti3 = torch.gather(mask_in, 2, torsion_indices[seq, :, 3]) |
|
is_valid = torch.stack((ti0, ti1, ti2, ti3), dim=-2).all(dim=-1) |
|
tors_mask[..., 3:7] = torch.logical_and(tors_mask[..., 3:7], is_valid) |
|
tors_mask[:, :, 7] = torch.logical_and( |
|
tors_mask[:, :, 7], mask_in[:, :, 4] |
|
) |
|
tors_mask[:, :, 8] = torch.logical_and( |
|
tors_mask[:, :, 8], mask_in[:, :, 4] |
|
) |
|
tors_mask[:, :, 9] = torch.logical_and( |
|
tors_mask[:, :, 9], mask_in[:, :, 5] |
|
) |
|
|
|
return tors_mask |
|
|
|
|
|
def get_torsions( |
|
xyz_in, seq, torsion_indices, torsion_can_flip, ref_angles, mask_in=None |
|
): |
|
B, L = xyz_in.shape[:2] |
|
|
|
tors_mask = get_tor_mask(seq, torsion_indices, mask_in) |
|
|
|
|
|
tors_planar = torch.zeros((B, L, 10), dtype=torch.bool, device=xyz_in.device) |
|
tors_planar[:, :, 5] = seq == aa2num["TYR"] |
|
|
|
|
|
xyz = xyz_in.clone() |
|
Rs, Ts = rigid_from_3_points(xyz[..., 0, :], xyz[..., 1, :], xyz[..., 2, :]) |
|
Nideal = torch.tensor([-0.5272, 1.3593, 0.000], device=xyz_in.device) |
|
Cideal = torch.tensor([1.5233, 0.000, 0.000], device=xyz_in.device) |
|
xyz[..., 0, :] = torch.einsum("brij,j->bri", Rs, Nideal) + Ts |
|
xyz[..., 2, :] = torch.einsum("brij,j->bri", Rs, Cideal) + Ts |
|
|
|
torsions = torch.zeros((B, L, 10, 2), device=xyz.device) |
|
|
|
torsions[:, 0, 1, 0] = 1.0 |
|
torsions[:, -1, 0, 0] = 1.0 |
|
|
|
|
|
torsions[:, :-1, 0, :] = th_dih( |
|
xyz[:, :-1, 1, :], xyz[:, :-1, 2, :], xyz[:, 1:, 0, :], xyz[:, 1:, 1, :] |
|
) |
|
|
|
torsions[:, 1:, 1, :] = th_dih( |
|
xyz[:, :-1, 2, :], xyz[:, 1:, 0, :], xyz[:, 1:, 1, :], xyz[:, 1:, 2, :] |
|
) |
|
|
|
torsions[:, :, 2, :] = -1 * th_dih( |
|
xyz[:, :, 0, :], xyz[:, :, 1, :], xyz[:, :, 2, :], xyz[:, :, 3, :] |
|
) |
|
|
|
|
|
ti0 = torch.gather(xyz, 2, torsion_indices[seq, :, 0, None].repeat(1, 1, 1, 3)) |
|
ti1 = torch.gather(xyz, 2, torsion_indices[seq, :, 1, None].repeat(1, 1, 1, 3)) |
|
ti2 = torch.gather(xyz, 2, torsion_indices[seq, :, 2, None].repeat(1, 1, 1, 3)) |
|
ti3 = torch.gather(xyz, 2, torsion_indices[seq, :, 3, None].repeat(1, 1, 1, 3)) |
|
torsions[:, :, 3:7, :] = th_dih(ti0, ti1, ti2, ti3) |
|
|
|
|
|
NC = 0.5 * (xyz[:, :, 0, :3] + xyz[:, :, 2, :3]) |
|
CA = xyz[:, :, 1, :3] |
|
CB = xyz[:, :, 4, :3] |
|
t = th_ang_v(CB - CA, NC - CA) |
|
t0 = ref_angles[seq][..., 0, :] |
|
torsions[:, :, 7, :] = torch.stack( |
|
(torch.sum(t * t0, dim=-1), t[..., 0] * t0[..., 1] - t[..., 1] * t0[..., 0]), |
|
dim=-1, |
|
) |
|
|
|
|
|
NCCA = NC - CA |
|
NCp = xyz[:, :, 2, :3] - xyz[:, :, 0, :3] |
|
NCpp = ( |
|
NCp |
|
- torch.sum(NCp * NCCA, dim=-1, keepdim=True) |
|
/ torch.sum(NCCA * NCCA, dim=-1, keepdim=True) |
|
* NCCA |
|
) |
|
t = th_ang_v(CB - CA, NCpp) |
|
t0 = ref_angles[seq][..., 1, :] |
|
torsions[:, :, 8, :] = torch.stack( |
|
(torch.sum(t * t0, dim=-1), t[..., 0] * t0[..., 1] - t[..., 1] * t0[..., 0]), |
|
dim=-1, |
|
) |
|
|
|
|
|
CG = xyz[:, :, 5, :3] |
|
t = th_ang_v(CG - CB, CA - CB) |
|
t0 = ref_angles[seq][..., 2, :] |
|
torsions[:, :, 9, :] = torch.stack( |
|
(torch.sum(t * t0, dim=-1), t[..., 0] * t0[..., 1] - t[..., 1] * t0[..., 0]), |
|
dim=-1, |
|
) |
|
|
|
mask0 = torch.isnan(torsions[..., 0]).nonzero() |
|
mask1 = torch.isnan(torsions[..., 1]).nonzero() |
|
torsions[mask0[:, 0], mask0[:, 1], mask0[:, 2], 0] = 1.0 |
|
torsions[mask1[:, 0], mask1[:, 1], mask1[:, 2], 1] = 0.0 |
|
|
|
|
|
torsions_alt = torsions.clone() |
|
torsions_alt[torsion_can_flip[seq, :]] *= -1 |
|
|
|
return torsions, torsions_alt, tors_mask, tors_planar |
|
|
|
|
|
def get_tips(xyz, seq): |
|
B, L = xyz.shape[:2] |
|
|
|
xyz_tips = torch.gather( |
|
xyz, 2, tip_indices.to(xyz.device)[seq][:, :, None, None].expand(-1, -1, -1, 3) |
|
).reshape(B, L, 3) |
|
mask = ~(torch.isnan(xyz_tips[:, :, 0])) |
|
if torch.isnan(xyz_tips).any(): |
|
|
|
N = xyz[:, :, 0] |
|
Ca = xyz[:, :, 1] |
|
C = xyz[:, :, 2] |
|
|
|
|
|
b = Ca - N |
|
c = C - Ca |
|
a = torch.cross(b, c, dim=-1) |
|
Cb = -0.58273431 * a + 0.56802827 * b - 0.54067466 * c + Ca |
|
|
|
xyz_tips = torch.where(torch.isnan(xyz_tips), Cb, xyz_tips) |
|
return xyz_tips, mask |
|
|
|
|
|
|
|
def make_frame(X, Y): |
|
Xn = X / torch.linalg.norm(X) |
|
Y = Y - torch.dot(Y, Xn) * Xn |
|
Yn = Y / torch.linalg.norm(Y) |
|
Z = torch.cross(Xn, Yn) |
|
Zn = Z / torch.linalg.norm(Z) |
|
|
|
return torch.stack((Xn, Yn, Zn), dim=-1) |
|
|
|
|
|
def cross_product_matrix(u): |
|
B, L = u.shape[:2] |
|
matrix = torch.zeros((B, L, 3, 3), device=u.device) |
|
matrix[:, :, 0, 1] = -u[..., 2] |
|
matrix[:, :, 0, 2] = u[..., 1] |
|
matrix[:, :, 1, 0] = u[..., 2] |
|
matrix[:, :, 1, 2] = -u[..., 0] |
|
matrix[:, :, 2, 0] = -u[..., 1] |
|
matrix[:, :, 2, 1] = u[..., 0] |
|
return matrix |
|
|
|
|
|
|
|
def writepdb( |
|
filename, atoms, seq, binderlen=None, idx_pdb=None, bfacts=None, chain_idx=None |
|
): |
|
f = open(filename, "w") |
|
ctr = 1 |
|
scpu = seq.cpu().squeeze() |
|
atomscpu = atoms.cpu().squeeze() |
|
if bfacts is None: |
|
bfacts = torch.zeros(atomscpu.shape[0]) |
|
if idx_pdb is None: |
|
idx_pdb = 1 + torch.arange(atomscpu.shape[0]) |
|
|
|
Bfacts = torch.clamp(bfacts.cpu(), 0, 1) |
|
for i, s in enumerate(scpu): |
|
if chain_idx is None: |
|
if binderlen is not None: |
|
if i < binderlen: |
|
chain = "A" |
|
else: |
|
chain = "B" |
|
elif binderlen is None: |
|
chain = "A" |
|
else: |
|
chain = chain_idx[i] |
|
if len(atomscpu.shape) == 2: |
|
f.write( |
|
"%-6s%5s %4s %3s %s%4d %8.3f%8.3f%8.3f%6.2f%6.2f\n" |
|
% ( |
|
"ATOM", |
|
ctr, |
|
" CA ", |
|
num2aa[s], |
|
chain, |
|
idx_pdb[i], |
|
atomscpu[i, 0], |
|
atomscpu[i, 1], |
|
atomscpu[i, 2], |
|
1.0, |
|
Bfacts[i], |
|
) |
|
) |
|
ctr += 1 |
|
elif atomscpu.shape[1] == 3: |
|
for j, atm_j in enumerate([" N ", " CA ", " C "]): |
|
f.write( |
|
"%-6s%5s %4s %3s %s%4d %8.3f%8.3f%8.3f%6.2f%6.2f\n" |
|
% ( |
|
"ATOM", |
|
ctr, |
|
atm_j, |
|
num2aa[s], |
|
chain, |
|
idx_pdb[i], |
|
atomscpu[i, j, 0], |
|
atomscpu[i, j, 1], |
|
atomscpu[i, j, 2], |
|
1.0, |
|
Bfacts[i], |
|
) |
|
) |
|
ctr += 1 |
|
elif atomscpu.shape[1] == 4: |
|
for j, atm_j in enumerate([" N ", " CA ", " C ", " O "]): |
|
f.write( |
|
"%-6s%5s %4s %3s %s%4d %8.3f%8.3f%8.3f%6.2f%6.2f\n" |
|
% ( |
|
"ATOM", |
|
ctr, |
|
atm_j, |
|
num2aa[s], |
|
chain, |
|
idx_pdb[i], |
|
atomscpu[i, j, 0], |
|
atomscpu[i, j, 1], |
|
atomscpu[i, j, 2], |
|
1.0, |
|
Bfacts[i], |
|
) |
|
) |
|
ctr += 1 |
|
|
|
else: |
|
natoms = atomscpu.shape[1] |
|
if natoms != 14 and natoms != 27: |
|
print("bad size!", atoms.shape) |
|
assert False |
|
atms = aa2long[s] |
|
|
|
if ( |
|
s == 8 |
|
and torch.linalg.norm(atomscpu[i, 9, :] - atomscpu[i, 5, :]) < 1.7 |
|
): |
|
atms = ( |
|
" N ", |
|
" CA ", |
|
" C ", |
|
" O ", |
|
" CB ", |
|
" CG ", |
|
" NE2", |
|
" CD2", |
|
" CE1", |
|
" ND1", |
|
None, |
|
None, |
|
None, |
|
None, |
|
" H ", |
|
" HA ", |
|
"1HB ", |
|
"2HB ", |
|
" HD2", |
|
" HE1", |
|
" HD1", |
|
None, |
|
None, |
|
None, |
|
None, |
|
None, |
|
None, |
|
) |
|
|
|
for j, atm_j in enumerate(atms): |
|
if ( |
|
j < natoms and atm_j is not None |
|
): |
|
f.write( |
|
"%-6s%5s %4s %3s %s%4d %8.3f%8.3f%8.3f%6.2f%6.2f\n" |
|
% ( |
|
"ATOM", |
|
ctr, |
|
atm_j, |
|
num2aa[s], |
|
chain, |
|
idx_pdb[i], |
|
atomscpu[i, j, 0], |
|
atomscpu[i, j, 1], |
|
atomscpu[i, j, 2], |
|
1.0, |
|
Bfacts[i], |
|
) |
|
) |
|
ctr += 1 |
|
|
|
|
|
|
|
tip_indices = torch.full((22,), 0) |
|
for i in range(22): |
|
tip_atm = aa2tip[i] |
|
atm_long = aa2long[i] |
|
tip_indices[i] = atm_long.index(tip_atm) |
|
|
|
|
|
torsion_indices = torch.full((22, 4, 4), 0) |
|
torsion_can_flip = torch.full((22, 10), False, dtype=torch.bool) |
|
for i in range(22): |
|
i_l, i_a = aa2long[i], aa2longalt[i] |
|
for j in range(4): |
|
if torsions[i][j] is None: |
|
continue |
|
for k in range(4): |
|
a = torsions[i][j][k] |
|
torsion_indices[i, j, k] = i_l.index(a) |
|
if i_l.index(a) != i_a.index(a): |
|
torsion_can_flip[i, 3 + j] = True |
|
|
|
torsion_can_flip[8, 4] = False |
|
|
|
|
|
allatom_mask = torch.zeros((22, 27), dtype=torch.bool) |
|
long2alt = torch.zeros((22, 27), dtype=torch.long) |
|
for i in range(22): |
|
i_l, i_lalt = aa2long[i], aa2longalt[i] |
|
for j, a in enumerate(i_l): |
|
if a is None: |
|
long2alt[i, j] = j |
|
else: |
|
long2alt[i, j] = i_lalt.index(a) |
|
allatom_mask[i, j] = True |
|
|
|
|
|
num_bonds = torch.zeros((22, 27, 27), dtype=torch.long) |
|
for i in range(22): |
|
num_bonds_i = np.zeros((27, 27)) |
|
for bnamei, bnamej in aabonds[i]: |
|
bi, bj = aa2long[i].index(bnamei), aa2long[i].index(bnamej) |
|
num_bonds_i[bi, bj] = 1 |
|
num_bonds_i = scipy.sparse.csgraph.shortest_path(num_bonds_i, directed=False) |
|
num_bonds_i[num_bonds_i >= 4] = 4 |
|
num_bonds[i, ...] = torch.tensor(num_bonds_i) |
|
|
|
|
|
|
|
ljlk_parameters = torch.zeros((22, 27, 5), dtype=torch.float) |
|
lj_correction_parameters = torch.zeros( |
|
(22, 27, 4), dtype=bool |
|
) |
|
for i in range(22): |
|
for j, a in enumerate(aa2type[i]): |
|
if a is not None: |
|
ljlk_parameters[i, j, :] = torch.tensor(type2ljlk[a]) |
|
lj_correction_parameters[i, j, 0] = (type2hb[a] == HbAtom.DO) + ( |
|
type2hb[a] == HbAtom.DA |
|
) |
|
lj_correction_parameters[i, j, 1] = (type2hb[a] == HbAtom.AC) + ( |
|
type2hb[a] == HbAtom.DA |
|
) |
|
lj_correction_parameters[i, j, 2] = type2hb[a] == HbAtom.HP |
|
lj_correction_parameters[i, j, 3] = a == "SH1" or a == "HS" |
|
|
|
|
|
|
|
def donorHs(D, bonds, atoms): |
|
dHs = [] |
|
for i, j in bonds: |
|
if i == D: |
|
idx_j = atoms.index(j) |
|
if idx_j >= 14: |
|
dHs.append(idx_j) |
|
if j == D: |
|
idx_i = atoms.index(i) |
|
if idx_i >= 14: |
|
dHs.append(idx_i) |
|
assert len(dHs) > 0 |
|
return dHs |
|
|
|
|
|
def acceptorBB0(A, hyb, bonds, atoms): |
|
if hyb == HbHybType.SP2: |
|
for i, j in bonds: |
|
if i == A: |
|
B = atoms.index(j) |
|
if B < 14: |
|
break |
|
if j == A: |
|
B = atoms.index(i) |
|
if B < 14: |
|
break |
|
for i, j in bonds: |
|
if i == atoms[B]: |
|
B0 = atoms.index(j) |
|
if B0 < 14: |
|
break |
|
if j == atoms[B]: |
|
B0 = atoms.index(i) |
|
if B0 < 14: |
|
break |
|
elif hyb == HbHybType.SP3 or hyb == HbHybType.RING: |
|
for i, j in bonds: |
|
if i == A: |
|
B = atoms.index(j) |
|
if B < 14: |
|
break |
|
if j == A: |
|
B = atoms.index(i) |
|
if B < 14: |
|
break |
|
for i, j in bonds: |
|
if i == A and j != atoms[B]: |
|
B0 = atoms.index(j) |
|
break |
|
if j == A and i != atoms[B]: |
|
B0 = atoms.index(i) |
|
break |
|
|
|
return B, B0 |
|
|
|
|
|
hbtypes = torch.full( |
|
(22, 27, 3), -1, dtype=torch.long |
|
) |
|
hbbaseatoms = torch.full( |
|
(22, 27, 2), -1, dtype=torch.long |
|
) |
|
hbpolys = torch.zeros( |
|
(HbDonType.NTYPES, HbAccType.NTYPES, 3, 15) |
|
) |
|
|
|
for i in range(22): |
|
for j, a in enumerate(aa2type[i]): |
|
if a in type2dontype: |
|
j_hs = donorHs(aa2long[i][j], aabonds[i], aa2long[i]) |
|
for j_h in j_hs: |
|
hbtypes[i, j_h, 0] = type2dontype[a] |
|
hbbaseatoms[i, j_h, 0] = j |
|
if a in type2acctype: |
|
j_b, j_b0 = acceptorBB0( |
|
aa2long[i][j], type2hybtype[a], aabonds[i], aa2long[i] |
|
) |
|
hbtypes[i, j, 1] = type2acctype[a] |
|
hbtypes[i, j, 2] = type2hybtype[a] |
|
hbbaseatoms[i, j, 0] = j_b |
|
hbbaseatoms[i, j, 1] = j_b0 |
|
|
|
for i in range(HbDonType.NTYPES): |
|
for j in range(HbAccType.NTYPES): |
|
weight = dontype2wt[i] * acctype2wt[j] |
|
|
|
pdist, pbah, pahd = hbtypepair2poly[(i, j)] |
|
xrange, yrange, coeffs = hbpolytype2coeffs[pdist] |
|
hbpolys[i, j, 0, 0] = weight |
|
hbpolys[i, j, 0, 1:3] = torch.tensor(xrange) |
|
hbpolys[i, j, 0, 3:5] = torch.tensor(yrange) |
|
hbpolys[i, j, 0, 5:] = torch.tensor(coeffs) |
|
xrange, yrange, coeffs = hbpolytype2coeffs[pahd] |
|
hbpolys[i, j, 1, 0] = weight |
|
hbpolys[i, j, 1, 1:3] = torch.tensor(xrange) |
|
hbpolys[i, j, 1, 3:5] = torch.tensor(yrange) |
|
hbpolys[i, j, 1, 5:] = torch.tensor(coeffs) |
|
xrange, yrange, coeffs = hbpolytype2coeffs[pbah] |
|
hbpolys[i, j, 2, 0] = weight |
|
hbpolys[i, j, 2, 1:3] = torch.tensor(xrange) |
|
hbpolys[i, j, 2, 3:5] = torch.tensor(yrange) |
|
hbpolys[i, j, 2, 5:] = torch.tensor(coeffs) |
|
|
|
|
|
base_indices = torch.full((22, 27), 0, dtype=torch.long) |
|
xyzs_in_base_frame = torch.ones((22, 27, 4)) |
|
RTs_by_torsion = torch.eye(4).repeat(22, 7, 1, 1) |
|
reference_angles = torch.ones((22, 3, 2)) |
|
|
|
for i in range(22): |
|
i_l = aa2long[i] |
|
for name, base, coords in ideal_coords[i]: |
|
idx = i_l.index(name) |
|
base_indices[i, idx] = base |
|
xyzs_in_base_frame[i, idx, :3] = torch.tensor(coords) |
|
|
|
|
|
RTs_by_torsion[i, 0, :3, :3] = torch.eye(3) |
|
RTs_by_torsion[i, 0, :3, 3] = torch.zeros(3) |
|
|
|
|
|
RTs_by_torsion[i, 1, :3, :3] = make_frame( |
|
xyzs_in_base_frame[i, 0, :3] - xyzs_in_base_frame[i, 1, :3], |
|
torch.tensor([1.0, 0.0, 0.0]), |
|
) |
|
RTs_by_torsion[i, 1, :3, 3] = xyzs_in_base_frame[i, 0, :3] |
|
|
|
|
|
RTs_by_torsion[i, 2, :3, :3] = make_frame( |
|
xyzs_in_base_frame[i, 2, :3] - xyzs_in_base_frame[i, 1, :3], |
|
xyzs_in_base_frame[i, 1, :3] - xyzs_in_base_frame[i, 0, :3], |
|
) |
|
RTs_by_torsion[i, 2, :3, 3] = xyzs_in_base_frame[i, 2, :3] |
|
|
|
|
|
if torsions[i][0] is not None: |
|
a0, a1, a2 = torsion_indices[i, 0, 0:3] |
|
RTs_by_torsion[i, 3, :3, :3] = make_frame( |
|
xyzs_in_base_frame[i, a2, :3] - xyzs_in_base_frame[i, a1, :3], |
|
xyzs_in_base_frame[i, a0, :3] - xyzs_in_base_frame[i, a1, :3], |
|
) |
|
RTs_by_torsion[i, 3, :3, 3] = xyzs_in_base_frame[i, a2, :3] |
|
|
|
|
|
for j in range(1, 4): |
|
if torsions[i][j] is not None: |
|
a2 = torsion_indices[i, j, 2] |
|
if (i == 18 and j == 2) or ( |
|
i == 8 and j == 2 |
|
): |
|
a0, a1 = torsion_indices[i, j, 0:2] |
|
RTs_by_torsion[i, 3 + j, :3, :3] = make_frame( |
|
xyzs_in_base_frame[i, a2, :3] - xyzs_in_base_frame[i, a1, :3], |
|
xyzs_in_base_frame[i, a0, :3] - xyzs_in_base_frame[i, a1, :3], |
|
) |
|
else: |
|
RTs_by_torsion[i, 3 + j, :3, :3] = make_frame( |
|
xyzs_in_base_frame[i, a2, :3], |
|
torch.tensor([-1.0, 0.0, 0.0]), |
|
) |
|
RTs_by_torsion[i, 3 + j, :3, 3] = xyzs_in_base_frame[i, a2, :3] |
|
|
|
|
|
NCr = 0.5 * (xyzs_in_base_frame[i, 0, :3] + xyzs_in_base_frame[i, 2, :3]) |
|
CAr = xyzs_in_base_frame[i, 1, :3] |
|
CBr = xyzs_in_base_frame[i, 4, :3] |
|
CGr = xyzs_in_base_frame[i, 5, :3] |
|
reference_angles[i, 0, :] = th_ang_v(CBr - CAr, NCr - CAr) |
|
NCp = xyzs_in_base_frame[i, 2, :3] - xyzs_in_base_frame[i, 0, :3] |
|
NCpp = NCp - torch.dot(NCp, NCr) / torch.dot(NCr, NCr) * NCr |
|
reference_angles[i, 1, :] = th_ang_v(CBr - CAr, NCpp) |
|
reference_angles[i, 2, :] = th_ang_v(CGr, torch.tensor([-1.0, 0.0, 0.0])) |
|
|
|
N_BACKBONE_ATOMS = 3 |
|
N_HEAVY = 14 |
|
|
|
|
|
def writepdb_multi( |
|
filename, |
|
atoms_stack, |
|
bfacts, |
|
seq_stack, |
|
backbone_only=False, |
|
chain_ids=None, |
|
use_hydrogens=True, |
|
): |
|
""" |
|
Function for writing multiple structural states of the same sequence into a single |
|
pdb file. |
|
""" |
|
|
|
f = open(filename, "w") |
|
|
|
if seq_stack.ndim != 2: |
|
T = atoms_stack.shape[0] |
|
seq_stack = torch.tile(seq_stack, (T, 1)) |
|
seq_stack = seq_stack.cpu() |
|
for atoms, scpu in zip(atoms_stack, seq_stack): |
|
ctr = 1 |
|
atomscpu = atoms.cpu() |
|
Bfacts = torch.clamp(bfacts.cpu(), 0, 1) |
|
for i, s in enumerate(scpu): |
|
atms = aa2long[s] |
|
for j, atm_j in enumerate(atms): |
|
if backbone_only and j >= N_BACKBONE_ATOMS: |
|
break |
|
if not use_hydrogens and j >= N_HEAVY: |
|
break |
|
if (atm_j is None) or (torch.all(torch.isnan(atomscpu[i, j]))): |
|
continue |
|
chain_id = "A" |
|
if chain_ids is not None: |
|
chain_id = chain_ids[i] |
|
f.write( |
|
"%-6s%5s %4s %3s %s%4d %8.3f%8.3f%8.3f%6.2f%6.2f\n" |
|
% ( |
|
"ATOM", |
|
ctr, |
|
atm_j, |
|
num2aa[s], |
|
chain_id, |
|
i + 1, |
|
atomscpu[i, j, 0], |
|
atomscpu[i, j, 1], |
|
atomscpu[i, j, 2], |
|
1.0, |
|
Bfacts[i], |
|
) |
|
) |
|
ctr += 1 |
|
|
|
f.write("ENDMDL\n") |
|
|
|
def calc_rmsd(xyz1, xyz2, eps=1e-6): |
|
""" |
|
Calculates RMSD between two sets of atoms (L, 3) |
|
""" |
|
|
|
xyz1 = xyz1 - xyz1.mean(0) |
|
xyz2 = xyz2 - xyz2.mean(0) |
|
|
|
|
|
C = xyz2.T @ xyz1 |
|
|
|
|
|
V, S, W = np.linalg.svd(C) |
|
|
|
|
|
d = np.ones([3,3]) |
|
d[:,-1] = np.sign(np.linalg.det(V)*np.linalg.det(W)) |
|
|
|
|
|
U = (d*V) @ W |
|
|
|
|
|
xyz2_ = xyz2 @ U |
|
L = xyz2_.shape[0] |
|
rmsd = np.sqrt(np.sum((xyz2_-xyz1)*(xyz2_-xyz1), axis=(0,1)) / L + eps) |
|
|
|
return rmsd, U |
|
|