GlandVergil's picture
Upload 686 files
3cdaa7d verified
import scipy.sparse
from rfdiffusion.chemical import *
from rfdiffusion.scoring import *
def generate_Cbeta(N, Ca, C):
# recreate Cb given N,Ca,C
b = Ca - N
c = C - Ca
a = torch.cross(b, c, dim=-1)
# These are the values used during training
Cb = -0.58273431*a + 0.56802827*b - 0.54067466*c + Ca
# fd: below matches sidechain generator (=Rosetta params)
# Cb = -0.57910144 * a + 0.5689693 * b - 0.5441217 * c + Ca
return Cb
def th_ang_v(ab, bc, eps: float = 1e-8):
def th_norm(x, eps: float = 1e-8):
return x.square().sum(-1, keepdim=True).add(eps).sqrt()
def th_N(x, alpha: float = 0):
return x / th_norm(x).add(alpha)
ab, bc = th_N(ab), th_N(bc)
cos_angle = torch.clamp((ab * bc).sum(-1), -1, 1)
sin_angle = torch.sqrt(1 - cos_angle.square() + eps)
dih = torch.stack((cos_angle, sin_angle), -1)
return dih
def th_dih_v(ab, bc, cd):
def th_cross(a, b):
a, b = torch.broadcast_tensors(a, b)
return torch.cross(a, b, dim=-1)
def th_norm(x, eps: float = 1e-8):
return x.square().sum(-1, keepdim=True).add(eps).sqrt()
def th_N(x, alpha: float = 0):
return x / th_norm(x).add(alpha)
ab, bc, cd = th_N(ab), th_N(bc), th_N(cd)
n1 = th_N(th_cross(ab, bc))
n2 = th_N(th_cross(bc, cd))
sin_angle = (th_cross(n1, bc) * n2).sum(-1)
cos_angle = (n1 * n2).sum(-1)
dih = torch.stack((cos_angle, sin_angle), -1)
return dih
def th_dih(a, b, c, d):
return th_dih_v(a - b, b - c, c - d)
# More complicated version splits error in CA-N and CA-C (giving more accurate CB position)
# It returns the rigid transformation from local frame to global frame
def rigid_from_3_points(N, Ca, C, non_ideal=False, eps=1e-8):
# N, Ca, C - [B,L, 3]
# R - [B,L, 3, 3], det(R)=1, inv(R) = R.T, R is a rotation matrix
B, L = N.shape[:2]
v1 = C - Ca
v2 = N - Ca
e1 = v1 / (torch.norm(v1, dim=-1, keepdim=True) + eps)
u2 = v2 - (torch.einsum("bli, bli -> bl", e1, v2)[..., None] * e1)
e2 = u2 / (torch.norm(u2, dim=-1, keepdim=True) + eps)
e3 = torch.cross(e1, e2, dim=-1)
R = torch.cat(
[e1[..., None], e2[..., None], e3[..., None]], axis=-1
) # [B,L,3,3] - rotation matrix
if non_ideal:
v2 = v2 / (torch.norm(v2, dim=-1, keepdim=True) + eps)
cosref = torch.sum(e1 * v2, dim=-1) # cosine of current N-CA-C bond angle
costgt = cos_ideal_NCAC.item()
cos2del = torch.clamp(
cosref * costgt
+ torch.sqrt((1 - cosref * cosref) * (1 - costgt * costgt) + eps),
min=-1.0,
max=1.0,
)
cosdel = torch.sqrt(0.5 * (1 + cos2del) + eps)
sindel = torch.sign(costgt - cosref) * torch.sqrt(1 - 0.5 * (1 + cos2del) + eps)
Rp = torch.eye(3, device=N.device).repeat(B, L, 1, 1)
Rp[:, :, 0, 0] = cosdel
Rp[:, :, 0, 1] = -sindel
Rp[:, :, 1, 0] = sindel
Rp[:, :, 1, 1] = cosdel
R = torch.einsum("blij,bljk->blik", R, Rp)
return R, Ca
def get_tor_mask(seq, torsion_indices, mask_in=None):
B, L = seq.shape[:2]
tors_mask = torch.ones((B, L, 10), dtype=torch.bool, device=seq.device)
tors_mask[..., 3:7] = torsion_indices[seq, :, -1] > 0
tors_mask[:, 0, 1] = False
tors_mask[:, -1, 0] = False
# mask for additional angles
tors_mask[:, :, 7] = seq != aa2num["GLY"]
tors_mask[:, :, 8] = seq != aa2num["GLY"]
tors_mask[:, :, 9] = torch.logical_and(seq != aa2num["GLY"], seq != aa2num["ALA"])
tors_mask[:, :, 9] = torch.logical_and(tors_mask[:, :, 9], seq != aa2num["UNK"])
tors_mask[:, :, 9] = torch.logical_and(tors_mask[:, :, 9], seq != aa2num["MAS"])
if mask_in != None:
# mask for missing atoms
# chis
ti0 = torch.gather(mask_in, 2, torsion_indices[seq, :, 0])
ti1 = torch.gather(mask_in, 2, torsion_indices[seq, :, 1])
ti2 = torch.gather(mask_in, 2, torsion_indices[seq, :, 2])
ti3 = torch.gather(mask_in, 2, torsion_indices[seq, :, 3])
is_valid = torch.stack((ti0, ti1, ti2, ti3), dim=-2).all(dim=-1)
tors_mask[..., 3:7] = torch.logical_and(tors_mask[..., 3:7], is_valid)
tors_mask[:, :, 7] = torch.logical_and(
tors_mask[:, :, 7], mask_in[:, :, 4]
) # CB exist?
tors_mask[:, :, 8] = torch.logical_and(
tors_mask[:, :, 8], mask_in[:, :, 4]
) # CB exist?
tors_mask[:, :, 9] = torch.logical_and(
tors_mask[:, :, 9], mask_in[:, :, 5]
) # XG exist?
return tors_mask
def get_torsions(
xyz_in, seq, torsion_indices, torsion_can_flip, ref_angles, mask_in=None
):
B, L = xyz_in.shape[:2]
tors_mask = get_tor_mask(seq, torsion_indices, mask_in)
# torsions to restrain to 0 or 180degree
tors_planar = torch.zeros((B, L, 10), dtype=torch.bool, device=xyz_in.device)
tors_planar[:, :, 5] = seq == aa2num["TYR"] # TYR chi 3 should be planar
# idealize given xyz coordinates before computing torsion angles
xyz = xyz_in.clone()
Rs, Ts = rigid_from_3_points(xyz[..., 0, :], xyz[..., 1, :], xyz[..., 2, :])
Nideal = torch.tensor([-0.5272, 1.3593, 0.000], device=xyz_in.device)
Cideal = torch.tensor([1.5233, 0.000, 0.000], device=xyz_in.device)
xyz[..., 0, :] = torch.einsum("brij,j->bri", Rs, Nideal) + Ts
xyz[..., 2, :] = torch.einsum("brij,j->bri", Rs, Cideal) + Ts
torsions = torch.zeros((B, L, 10, 2), device=xyz.device)
# avoid undefined angles for H generation
torsions[:, 0, 1, 0] = 1.0
torsions[:, -1, 0, 0] = 1.0
# omega
torsions[:, :-1, 0, :] = th_dih(
xyz[:, :-1, 1, :], xyz[:, :-1, 2, :], xyz[:, 1:, 0, :], xyz[:, 1:, 1, :]
)
# phi
torsions[:, 1:, 1, :] = th_dih(
xyz[:, :-1, 2, :], xyz[:, 1:, 0, :], xyz[:, 1:, 1, :], xyz[:, 1:, 2, :]
)
# psi
torsions[:, :, 2, :] = -1 * th_dih(
xyz[:, :, 0, :], xyz[:, :, 1, :], xyz[:, :, 2, :], xyz[:, :, 3, :]
)
# chis
ti0 = torch.gather(xyz, 2, torsion_indices[seq, :, 0, None].repeat(1, 1, 1, 3))
ti1 = torch.gather(xyz, 2, torsion_indices[seq, :, 1, None].repeat(1, 1, 1, 3))
ti2 = torch.gather(xyz, 2, torsion_indices[seq, :, 2, None].repeat(1, 1, 1, 3))
ti3 = torch.gather(xyz, 2, torsion_indices[seq, :, 3, None].repeat(1, 1, 1, 3))
torsions[:, :, 3:7, :] = th_dih(ti0, ti1, ti2, ti3)
# CB bend
NC = 0.5 * (xyz[:, :, 0, :3] + xyz[:, :, 2, :3])
CA = xyz[:, :, 1, :3]
CB = xyz[:, :, 4, :3]
t = th_ang_v(CB - CA, NC - CA)
t0 = ref_angles[seq][..., 0, :]
torsions[:, :, 7, :] = torch.stack(
(torch.sum(t * t0, dim=-1), t[..., 0] * t0[..., 1] - t[..., 1] * t0[..., 0]),
dim=-1,
)
# CB twist
NCCA = NC - CA
NCp = xyz[:, :, 2, :3] - xyz[:, :, 0, :3]
NCpp = (
NCp
- torch.sum(NCp * NCCA, dim=-1, keepdim=True)
/ torch.sum(NCCA * NCCA, dim=-1, keepdim=True)
* NCCA
)
t = th_ang_v(CB - CA, NCpp)
t0 = ref_angles[seq][..., 1, :]
torsions[:, :, 8, :] = torch.stack(
(torch.sum(t * t0, dim=-1), t[..., 0] * t0[..., 1] - t[..., 1] * t0[..., 0]),
dim=-1,
)
# CG bend
CG = xyz[:, :, 5, :3]
t = th_ang_v(CG - CB, CA - CB)
t0 = ref_angles[seq][..., 2, :]
torsions[:, :, 9, :] = torch.stack(
(torch.sum(t * t0, dim=-1), t[..., 0] * t0[..., 1] - t[..., 1] * t0[..., 0]),
dim=-1,
)
mask0 = torch.isnan(torsions[..., 0]).nonzero()
mask1 = torch.isnan(torsions[..., 1]).nonzero()
torsions[mask0[:, 0], mask0[:, 1], mask0[:, 2], 0] = 1.0
torsions[mask1[:, 0], mask1[:, 1], mask1[:, 2], 1] = 0.0
# alt chis
torsions_alt = torsions.clone()
torsions_alt[torsion_can_flip[seq, :]] *= -1
return torsions, torsions_alt, tors_mask, tors_planar
def get_tips(xyz, seq):
B, L = xyz.shape[:2]
xyz_tips = torch.gather(
xyz, 2, tip_indices.to(xyz.device)[seq][:, :, None, None].expand(-1, -1, -1, 3)
).reshape(B, L, 3)
mask = ~(torch.isnan(xyz_tips[:, :, 0]))
if torch.isnan(xyz_tips).any(): # replace NaN tip atom with virtual Cb atom
# three anchor atoms
N = xyz[:, :, 0]
Ca = xyz[:, :, 1]
C = xyz[:, :, 2]
# recreate Cb given N,Ca,C
b = Ca - N
c = C - Ca
a = torch.cross(b, c, dim=-1)
Cb = -0.58273431 * a + 0.56802827 * b - 0.54067466 * c + Ca
xyz_tips = torch.where(torch.isnan(xyz_tips), Cb, xyz_tips)
return xyz_tips, mask
# process ideal frames
def make_frame(X, Y):
Xn = X / torch.linalg.norm(X)
Y = Y - torch.dot(Y, Xn) * Xn
Yn = Y / torch.linalg.norm(Y)
Z = torch.cross(Xn, Yn)
Zn = Z / torch.linalg.norm(Z)
return torch.stack((Xn, Yn, Zn), dim=-1)
def cross_product_matrix(u):
B, L = u.shape[:2]
matrix = torch.zeros((B, L, 3, 3), device=u.device)
matrix[:, :, 0, 1] = -u[..., 2]
matrix[:, :, 0, 2] = u[..., 1]
matrix[:, :, 1, 0] = u[..., 2]
matrix[:, :, 1, 2] = -u[..., 0]
matrix[:, :, 2, 0] = -u[..., 1]
matrix[:, :, 2, 1] = u[..., 0]
return matrix
# writepdb
def writepdb(
filename, atoms, seq, binderlen=None, idx_pdb=None, bfacts=None, chain_idx=None
):
f = open(filename, "w")
ctr = 1
scpu = seq.cpu().squeeze()
atomscpu = atoms.cpu().squeeze()
if bfacts is None:
bfacts = torch.zeros(atomscpu.shape[0])
if idx_pdb is None:
idx_pdb = 1 + torch.arange(atomscpu.shape[0])
Bfacts = torch.clamp(bfacts.cpu(), 0, 1)
for i, s in enumerate(scpu):
if chain_idx is None:
if binderlen is not None:
if i < binderlen:
chain = "A"
else:
chain = "B"
elif binderlen is None:
chain = "A"
else:
chain = chain_idx[i]
if len(atomscpu.shape) == 2:
f.write(
"%-6s%5s %4s %3s %s%4d %8.3f%8.3f%8.3f%6.2f%6.2f\n"
% (
"ATOM",
ctr,
" CA ",
num2aa[s],
chain,
idx_pdb[i],
atomscpu[i, 0],
atomscpu[i, 1],
atomscpu[i, 2],
1.0,
Bfacts[i],
)
)
ctr += 1
elif atomscpu.shape[1] == 3:
for j, atm_j in enumerate([" N ", " CA ", " C "]):
f.write(
"%-6s%5s %4s %3s %s%4d %8.3f%8.3f%8.3f%6.2f%6.2f\n"
% (
"ATOM",
ctr,
atm_j,
num2aa[s],
chain,
idx_pdb[i],
atomscpu[i, j, 0],
atomscpu[i, j, 1],
atomscpu[i, j, 2],
1.0,
Bfacts[i],
)
)
ctr += 1
elif atomscpu.shape[1] == 4:
for j, atm_j in enumerate([" N ", " CA ", " C ", " O "]):
f.write(
"%-6s%5s %4s %3s %s%4d %8.3f%8.3f%8.3f%6.2f%6.2f\n"
% (
"ATOM",
ctr,
atm_j,
num2aa[s],
chain,
idx_pdb[i],
atomscpu[i, j, 0],
atomscpu[i, j, 1],
atomscpu[i, j, 2],
1.0,
Bfacts[i],
)
)
ctr += 1
else:
natoms = atomscpu.shape[1]
if natoms != 14 and natoms != 27:
print("bad size!", atoms.shape)
assert False
atms = aa2long[s]
# his prot hack
if (
s == 8
and torch.linalg.norm(atomscpu[i, 9, :] - atomscpu[i, 5, :]) < 1.7
):
atms = (
" N ",
" CA ",
" C ",
" O ",
" CB ",
" CG ",
" NE2",
" CD2",
" CE1",
" ND1",
None,
None,
None,
None,
" H ",
" HA ",
"1HB ",
"2HB ",
" HD2",
" HE1",
" HD1",
None,
None,
None,
None,
None,
None,
) # his_d
for j, atm_j in enumerate(atms):
if (
j < natoms and atm_j is not None
): # and not torch.isnan(atomscpu[i,j,:]).any()):
f.write(
"%-6s%5s %4s %3s %s%4d %8.3f%8.3f%8.3f%6.2f%6.2f\n"
% (
"ATOM",
ctr,
atm_j,
num2aa[s],
chain,
idx_pdb[i],
atomscpu[i, j, 0],
atomscpu[i, j, 1],
atomscpu[i, j, 2],
1.0,
Bfacts[i],
)
)
ctr += 1
# resolve tip atom indices
tip_indices = torch.full((22,), 0)
for i in range(22):
tip_atm = aa2tip[i]
atm_long = aa2long[i]
tip_indices[i] = atm_long.index(tip_atm)
# resolve torsion indices
torsion_indices = torch.full((22, 4, 4), 0)
torsion_can_flip = torch.full((22, 10), False, dtype=torch.bool)
for i in range(22):
i_l, i_a = aa2long[i], aa2longalt[i]
for j in range(4):
if torsions[i][j] is None:
continue
for k in range(4):
a = torsions[i][j][k]
torsion_indices[i, j, k] = i_l.index(a)
if i_l.index(a) != i_a.index(a):
torsion_can_flip[i, 3 + j] = True ##bb tors never flip
# HIS is a special case
torsion_can_flip[8, 4] = False
# build the mapping from atoms in the full rep (Nx27) to the "alternate" rep
allatom_mask = torch.zeros((22, 27), dtype=torch.bool)
long2alt = torch.zeros((22, 27), dtype=torch.long)
for i in range(22):
i_l, i_lalt = aa2long[i], aa2longalt[i]
for j, a in enumerate(i_l):
if a is None:
long2alt[i, j] = j
else:
long2alt[i, j] = i_lalt.index(a)
allatom_mask[i, j] = True
# bond graph traversal
num_bonds = torch.zeros((22, 27, 27), dtype=torch.long)
for i in range(22):
num_bonds_i = np.zeros((27, 27))
for bnamei, bnamej in aabonds[i]:
bi, bj = aa2long[i].index(bnamei), aa2long[i].index(bnamej)
num_bonds_i[bi, bj] = 1
num_bonds_i = scipy.sparse.csgraph.shortest_path(num_bonds_i, directed=False)
num_bonds_i[num_bonds_i >= 4] = 4
num_bonds[i, ...] = torch.tensor(num_bonds_i)
# LJ/LK scoring parameters
ljlk_parameters = torch.zeros((22, 27, 5), dtype=torch.float)
lj_correction_parameters = torch.zeros(
(22, 27, 4), dtype=bool
) # donor/acceptor/hpol/disulf
for i in range(22):
for j, a in enumerate(aa2type[i]):
if a is not None:
ljlk_parameters[i, j, :] = torch.tensor(type2ljlk[a])
lj_correction_parameters[i, j, 0] = (type2hb[a] == HbAtom.DO) + (
type2hb[a] == HbAtom.DA
)
lj_correction_parameters[i, j, 1] = (type2hb[a] == HbAtom.AC) + (
type2hb[a] == HbAtom.DA
)
lj_correction_parameters[i, j, 2] = type2hb[a] == HbAtom.HP
lj_correction_parameters[i, j, 3] = a == "SH1" or a == "HS"
# hbond scoring parameters
def donorHs(D, bonds, atoms):
dHs = []
for i, j in bonds:
if i == D:
idx_j = atoms.index(j)
if idx_j >= 14: # if atom j is a hydrogen
dHs.append(idx_j)
if j == D:
idx_i = atoms.index(i)
if idx_i >= 14: # if atom j is a hydrogen
dHs.append(idx_i)
assert len(dHs) > 0
return dHs
def acceptorBB0(A, hyb, bonds, atoms):
if hyb == HbHybType.SP2:
for i, j in bonds:
if i == A:
B = atoms.index(j)
if B < 14:
break
if j == A:
B = atoms.index(i)
if B < 14:
break
for i, j in bonds:
if i == atoms[B]:
B0 = atoms.index(j)
if B0 < 14:
break
if j == atoms[B]:
B0 = atoms.index(i)
if B0 < 14:
break
elif hyb == HbHybType.SP3 or hyb == HbHybType.RING:
for i, j in bonds:
if i == A:
B = atoms.index(j)
if B < 14:
break
if j == A:
B = atoms.index(i)
if B < 14:
break
for i, j in bonds:
if i == A and j != atoms[B]:
B0 = atoms.index(j)
break
if j == A and i != atoms[B]:
B0 = atoms.index(i)
break
return B, B0
hbtypes = torch.full(
(22, 27, 3), -1, dtype=torch.long
) # (donortype, acceptortype, acchybtype)
hbbaseatoms = torch.full(
(22, 27, 2), -1, dtype=torch.long
) # (B,B0) for acc; (D,-1) for don
hbpolys = torch.zeros(
(HbDonType.NTYPES, HbAccType.NTYPES, 3, 15)
) # weight,xmin,xmax,ymin,ymax,c9,...,c0
for i in range(22):
for j, a in enumerate(aa2type[i]):
if a in type2dontype:
j_hs = donorHs(aa2long[i][j], aabonds[i], aa2long[i])
for j_h in j_hs:
hbtypes[i, j_h, 0] = type2dontype[a]
hbbaseatoms[i, j_h, 0] = j
if a in type2acctype:
j_b, j_b0 = acceptorBB0(
aa2long[i][j], type2hybtype[a], aabonds[i], aa2long[i]
)
hbtypes[i, j, 1] = type2acctype[a]
hbtypes[i, j, 2] = type2hybtype[a]
hbbaseatoms[i, j, 0] = j_b
hbbaseatoms[i, j, 1] = j_b0
for i in range(HbDonType.NTYPES):
for j in range(HbAccType.NTYPES):
weight = dontype2wt[i] * acctype2wt[j]
pdist, pbah, pahd = hbtypepair2poly[(i, j)]
xrange, yrange, coeffs = hbpolytype2coeffs[pdist]
hbpolys[i, j, 0, 0] = weight
hbpolys[i, j, 0, 1:3] = torch.tensor(xrange)
hbpolys[i, j, 0, 3:5] = torch.tensor(yrange)
hbpolys[i, j, 0, 5:] = torch.tensor(coeffs)
xrange, yrange, coeffs = hbpolytype2coeffs[pahd]
hbpolys[i, j, 1, 0] = weight
hbpolys[i, j, 1, 1:3] = torch.tensor(xrange)
hbpolys[i, j, 1, 3:5] = torch.tensor(yrange)
hbpolys[i, j, 1, 5:] = torch.tensor(coeffs)
xrange, yrange, coeffs = hbpolytype2coeffs[pbah]
hbpolys[i, j, 2, 0] = weight
hbpolys[i, j, 2, 1:3] = torch.tensor(xrange)
hbpolys[i, j, 2, 3:5] = torch.tensor(yrange)
hbpolys[i, j, 2, 5:] = torch.tensor(coeffs)
# kinematic parameters
base_indices = torch.full((22, 27), 0, dtype=torch.long)
xyzs_in_base_frame = torch.ones((22, 27, 4))
RTs_by_torsion = torch.eye(4).repeat(22, 7, 1, 1)
reference_angles = torch.ones((22, 3, 2))
for i in range(22):
i_l = aa2long[i]
for name, base, coords in ideal_coords[i]:
idx = i_l.index(name)
base_indices[i, idx] = base
xyzs_in_base_frame[i, idx, :3] = torch.tensor(coords)
# omega frame
RTs_by_torsion[i, 0, :3, :3] = torch.eye(3)
RTs_by_torsion[i, 0, :3, 3] = torch.zeros(3)
# phi frame
RTs_by_torsion[i, 1, :3, :3] = make_frame(
xyzs_in_base_frame[i, 0, :3] - xyzs_in_base_frame[i, 1, :3],
torch.tensor([1.0, 0.0, 0.0]),
)
RTs_by_torsion[i, 1, :3, 3] = xyzs_in_base_frame[i, 0, :3]
# psi frame
RTs_by_torsion[i, 2, :3, :3] = make_frame(
xyzs_in_base_frame[i, 2, :3] - xyzs_in_base_frame[i, 1, :3],
xyzs_in_base_frame[i, 1, :3] - xyzs_in_base_frame[i, 0, :3],
)
RTs_by_torsion[i, 2, :3, 3] = xyzs_in_base_frame[i, 2, :3]
# chi1 frame
if torsions[i][0] is not None:
a0, a1, a2 = torsion_indices[i, 0, 0:3]
RTs_by_torsion[i, 3, :3, :3] = make_frame(
xyzs_in_base_frame[i, a2, :3] - xyzs_in_base_frame[i, a1, :3],
xyzs_in_base_frame[i, a0, :3] - xyzs_in_base_frame[i, a1, :3],
)
RTs_by_torsion[i, 3, :3, 3] = xyzs_in_base_frame[i, a2, :3]
# chi2~4 frame
for j in range(1, 4):
if torsions[i][j] is not None:
a2 = torsion_indices[i, j, 2]
if (i == 18 and j == 2) or (
i == 8 and j == 2
): # TYR CZ-OH & HIS CE1-HE1 a special case
a0, a1 = torsion_indices[i, j, 0:2]
RTs_by_torsion[i, 3 + j, :3, :3] = make_frame(
xyzs_in_base_frame[i, a2, :3] - xyzs_in_base_frame[i, a1, :3],
xyzs_in_base_frame[i, a0, :3] - xyzs_in_base_frame[i, a1, :3],
)
else:
RTs_by_torsion[i, 3 + j, :3, :3] = make_frame(
xyzs_in_base_frame[i, a2, :3],
torch.tensor([-1.0, 0.0, 0.0]),
)
RTs_by_torsion[i, 3 + j, :3, 3] = xyzs_in_base_frame[i, a2, :3]
# CB/CG angles
NCr = 0.5 * (xyzs_in_base_frame[i, 0, :3] + xyzs_in_base_frame[i, 2, :3])
CAr = xyzs_in_base_frame[i, 1, :3]
CBr = xyzs_in_base_frame[i, 4, :3]
CGr = xyzs_in_base_frame[i, 5, :3]
reference_angles[i, 0, :] = th_ang_v(CBr - CAr, NCr - CAr)
NCp = xyzs_in_base_frame[i, 2, :3] - xyzs_in_base_frame[i, 0, :3]
NCpp = NCp - torch.dot(NCp, NCr) / torch.dot(NCr, NCr) * NCr
reference_angles[i, 1, :] = th_ang_v(CBr - CAr, NCpp)
reference_angles[i, 2, :] = th_ang_v(CGr, torch.tensor([-1.0, 0.0, 0.0]))
N_BACKBONE_ATOMS = 3
N_HEAVY = 14
def writepdb_multi(
filename,
atoms_stack,
bfacts,
seq_stack,
backbone_only=False,
chain_ids=None,
use_hydrogens=True,
):
"""
Function for writing multiple structural states of the same sequence into a single
pdb file.
"""
f = open(filename, "w")
if seq_stack.ndim != 2:
T = atoms_stack.shape[0]
seq_stack = torch.tile(seq_stack, (T, 1))
seq_stack = seq_stack.cpu()
for atoms, scpu in zip(atoms_stack, seq_stack):
ctr = 1
atomscpu = atoms.cpu()
Bfacts = torch.clamp(bfacts.cpu(), 0, 1)
for i, s in enumerate(scpu):
atms = aa2long[s]
for j, atm_j in enumerate(atms):
if backbone_only and j >= N_BACKBONE_ATOMS:
break
if not use_hydrogens and j >= N_HEAVY:
break
if (atm_j is None) or (torch.all(torch.isnan(atomscpu[i, j]))):
continue
chain_id = "A"
if chain_ids is not None:
chain_id = chain_ids[i]
f.write(
"%-6s%5s %4s %3s %s%4d %8.3f%8.3f%8.3f%6.2f%6.2f\n"
% (
"ATOM",
ctr,
atm_j,
num2aa[s],
chain_id,
i + 1,
atomscpu[i, j, 0],
atomscpu[i, j, 1],
atomscpu[i, j, 2],
1.0,
Bfacts[i],
)
)
ctr += 1
f.write("ENDMDL\n")
def calc_rmsd(xyz1, xyz2, eps=1e-6):
"""
Calculates RMSD between two sets of atoms (L, 3)
"""
# center to CA centroid
xyz1 = xyz1 - xyz1.mean(0)
xyz2 = xyz2 - xyz2.mean(0)
# Computation of the covariance matrix
C = xyz2.T @ xyz1
# Compute otimal rotation matrix using SVD
V, S, W = np.linalg.svd(C)
# get sign to ensure right-handedness
d = np.ones([3,3])
d[:,-1] = np.sign(np.linalg.det(V)*np.linalg.det(W))
# Rotation matrix U
U = (d*V) @ W
# Rotate xyz2
xyz2_ = xyz2 @ U
L = xyz2_.shape[0]
rmsd = np.sqrt(np.sum((xyz2_-xyz1)*(xyz2_-xyz1), axis=(0,1)) / L + eps)
return rmsd, U