import scipy.sparse from rfdiffusion.chemical import * from rfdiffusion.scoring import * def generate_Cbeta(N, Ca, C): # recreate Cb given N,Ca,C b = Ca - N c = C - Ca a = torch.cross(b, c, dim=-1) # These are the values used during training Cb = -0.58273431*a + 0.56802827*b - 0.54067466*c + Ca # fd: below matches sidechain generator (=Rosetta params) # Cb = -0.57910144 * a + 0.5689693 * b - 0.5441217 * c + Ca return Cb def th_ang_v(ab, bc, eps: float = 1e-8): def th_norm(x, eps: float = 1e-8): return x.square().sum(-1, keepdim=True).add(eps).sqrt() def th_N(x, alpha: float = 0): return x / th_norm(x).add(alpha) ab, bc = th_N(ab), th_N(bc) cos_angle = torch.clamp((ab * bc).sum(-1), -1, 1) sin_angle = torch.sqrt(1 - cos_angle.square() + eps) dih = torch.stack((cos_angle, sin_angle), -1) return dih def th_dih_v(ab, bc, cd): def th_cross(a, b): a, b = torch.broadcast_tensors(a, b) return torch.cross(a, b, dim=-1) def th_norm(x, eps: float = 1e-8): return x.square().sum(-1, keepdim=True).add(eps).sqrt() def th_N(x, alpha: float = 0): return x / th_norm(x).add(alpha) ab, bc, cd = th_N(ab), th_N(bc), th_N(cd) n1 = th_N(th_cross(ab, bc)) n2 = th_N(th_cross(bc, cd)) sin_angle = (th_cross(n1, bc) * n2).sum(-1) cos_angle = (n1 * n2).sum(-1) dih = torch.stack((cos_angle, sin_angle), -1) return dih def th_dih(a, b, c, d): return th_dih_v(a - b, b - c, c - d) # More complicated version splits error in CA-N and CA-C (giving more accurate CB position) # It returns the rigid transformation from local frame to global frame def rigid_from_3_points(N, Ca, C, non_ideal=False, eps=1e-8): # N, Ca, C - [B,L, 3] # R - [B,L, 3, 3], det(R)=1, inv(R) = R.T, R is a rotation matrix B, L = N.shape[:2] v1 = C - Ca v2 = N - Ca e1 = v1 / (torch.norm(v1, dim=-1, keepdim=True) + eps) u2 = v2 - (torch.einsum("bli, bli -> bl", e1, v2)[..., None] * e1) e2 = u2 / (torch.norm(u2, dim=-1, keepdim=True) + eps) e3 = torch.cross(e1, e2, dim=-1) R = torch.cat( [e1[..., None], e2[..., None], e3[..., None]], axis=-1 ) # [B,L,3,3] - rotation matrix if non_ideal: v2 = v2 / (torch.norm(v2, dim=-1, keepdim=True) + eps) cosref = torch.sum(e1 * v2, dim=-1) # cosine of current N-CA-C bond angle costgt = cos_ideal_NCAC.item() cos2del = torch.clamp( cosref * costgt + torch.sqrt((1 - cosref * cosref) * (1 - costgt * costgt) + eps), min=-1.0, max=1.0, ) cosdel = torch.sqrt(0.5 * (1 + cos2del) + eps) sindel = torch.sign(costgt - cosref) * torch.sqrt(1 - 0.5 * (1 + cos2del) + eps) Rp = torch.eye(3, device=N.device).repeat(B, L, 1, 1) Rp[:, :, 0, 0] = cosdel Rp[:, :, 0, 1] = -sindel Rp[:, :, 1, 0] = sindel Rp[:, :, 1, 1] = cosdel R = torch.einsum("blij,bljk->blik", R, Rp) return R, Ca def get_tor_mask(seq, torsion_indices, mask_in=None): B, L = seq.shape[:2] tors_mask = torch.ones((B, L, 10), dtype=torch.bool, device=seq.device) tors_mask[..., 3:7] = torsion_indices[seq, :, -1] > 0 tors_mask[:, 0, 1] = False tors_mask[:, -1, 0] = False # mask for additional angles tors_mask[:, :, 7] = seq != aa2num["GLY"] tors_mask[:, :, 8] = seq != aa2num["GLY"] tors_mask[:, :, 9] = torch.logical_and(seq != aa2num["GLY"], seq != aa2num["ALA"]) tors_mask[:, :, 9] = torch.logical_and(tors_mask[:, :, 9], seq != aa2num["UNK"]) tors_mask[:, :, 9] = torch.logical_and(tors_mask[:, :, 9], seq != aa2num["MAS"]) if mask_in != None: # mask for missing atoms # chis ti0 = torch.gather(mask_in, 2, torsion_indices[seq, :, 0]) ti1 = torch.gather(mask_in, 2, torsion_indices[seq, :, 1]) ti2 = torch.gather(mask_in, 2, torsion_indices[seq, :, 2]) ti3 = torch.gather(mask_in, 2, torsion_indices[seq, :, 3]) is_valid = torch.stack((ti0, ti1, ti2, ti3), dim=-2).all(dim=-1) tors_mask[..., 3:7] = torch.logical_and(tors_mask[..., 3:7], is_valid) tors_mask[:, :, 7] = torch.logical_and( tors_mask[:, :, 7], mask_in[:, :, 4] ) # CB exist? tors_mask[:, :, 8] = torch.logical_and( tors_mask[:, :, 8], mask_in[:, :, 4] ) # CB exist? tors_mask[:, :, 9] = torch.logical_and( tors_mask[:, :, 9], mask_in[:, :, 5] ) # XG exist? return tors_mask def get_torsions( xyz_in, seq, torsion_indices, torsion_can_flip, ref_angles, mask_in=None ): B, L = xyz_in.shape[:2] tors_mask = get_tor_mask(seq, torsion_indices, mask_in) # torsions to restrain to 0 or 180degree tors_planar = torch.zeros((B, L, 10), dtype=torch.bool, device=xyz_in.device) tors_planar[:, :, 5] = seq == aa2num["TYR"] # TYR chi 3 should be planar # idealize given xyz coordinates before computing torsion angles xyz = xyz_in.clone() Rs, Ts = rigid_from_3_points(xyz[..., 0, :], xyz[..., 1, :], xyz[..., 2, :]) Nideal = torch.tensor([-0.5272, 1.3593, 0.000], device=xyz_in.device) Cideal = torch.tensor([1.5233, 0.000, 0.000], device=xyz_in.device) xyz[..., 0, :] = torch.einsum("brij,j->bri", Rs, Nideal) + Ts xyz[..., 2, :] = torch.einsum("brij,j->bri", Rs, Cideal) + Ts torsions = torch.zeros((B, L, 10, 2), device=xyz.device) # avoid undefined angles for H generation torsions[:, 0, 1, 0] = 1.0 torsions[:, -1, 0, 0] = 1.0 # omega torsions[:, :-1, 0, :] = th_dih( xyz[:, :-1, 1, :], xyz[:, :-1, 2, :], xyz[:, 1:, 0, :], xyz[:, 1:, 1, :] ) # phi torsions[:, 1:, 1, :] = th_dih( xyz[:, :-1, 2, :], xyz[:, 1:, 0, :], xyz[:, 1:, 1, :], xyz[:, 1:, 2, :] ) # psi torsions[:, :, 2, :] = -1 * th_dih( xyz[:, :, 0, :], xyz[:, :, 1, :], xyz[:, :, 2, :], xyz[:, :, 3, :] ) # chis ti0 = torch.gather(xyz, 2, torsion_indices[seq, :, 0, None].repeat(1, 1, 1, 3)) ti1 = torch.gather(xyz, 2, torsion_indices[seq, :, 1, None].repeat(1, 1, 1, 3)) ti2 = torch.gather(xyz, 2, torsion_indices[seq, :, 2, None].repeat(1, 1, 1, 3)) ti3 = torch.gather(xyz, 2, torsion_indices[seq, :, 3, None].repeat(1, 1, 1, 3)) torsions[:, :, 3:7, :] = th_dih(ti0, ti1, ti2, ti3) # CB bend NC = 0.5 * (xyz[:, :, 0, :3] + xyz[:, :, 2, :3]) CA = xyz[:, :, 1, :3] CB = xyz[:, :, 4, :3] t = th_ang_v(CB - CA, NC - CA) t0 = ref_angles[seq][..., 0, :] torsions[:, :, 7, :] = torch.stack( (torch.sum(t * t0, dim=-1), t[..., 0] * t0[..., 1] - t[..., 1] * t0[..., 0]), dim=-1, ) # CB twist NCCA = NC - CA NCp = xyz[:, :, 2, :3] - xyz[:, :, 0, :3] NCpp = ( NCp - torch.sum(NCp * NCCA, dim=-1, keepdim=True) / torch.sum(NCCA * NCCA, dim=-1, keepdim=True) * NCCA ) t = th_ang_v(CB - CA, NCpp) t0 = ref_angles[seq][..., 1, :] torsions[:, :, 8, :] = torch.stack( (torch.sum(t * t0, dim=-1), t[..., 0] * t0[..., 1] - t[..., 1] * t0[..., 0]), dim=-1, ) # CG bend CG = xyz[:, :, 5, :3] t = th_ang_v(CG - CB, CA - CB) t0 = ref_angles[seq][..., 2, :] torsions[:, :, 9, :] = torch.stack( (torch.sum(t * t0, dim=-1), t[..., 0] * t0[..., 1] - t[..., 1] * t0[..., 0]), dim=-1, ) mask0 = torch.isnan(torsions[..., 0]).nonzero() mask1 = torch.isnan(torsions[..., 1]).nonzero() torsions[mask0[:, 0], mask0[:, 1], mask0[:, 2], 0] = 1.0 torsions[mask1[:, 0], mask1[:, 1], mask1[:, 2], 1] = 0.0 # alt chis torsions_alt = torsions.clone() torsions_alt[torsion_can_flip[seq, :]] *= -1 return torsions, torsions_alt, tors_mask, tors_planar def get_tips(xyz, seq): B, L = xyz.shape[:2] xyz_tips = torch.gather( xyz, 2, tip_indices.to(xyz.device)[seq][:, :, None, None].expand(-1, -1, -1, 3) ).reshape(B, L, 3) mask = ~(torch.isnan(xyz_tips[:, :, 0])) if torch.isnan(xyz_tips).any(): # replace NaN tip atom with virtual Cb atom # three anchor atoms N = xyz[:, :, 0] Ca = xyz[:, :, 1] C = xyz[:, :, 2] # recreate Cb given N,Ca,C b = Ca - N c = C - Ca a = torch.cross(b, c, dim=-1) Cb = -0.58273431 * a + 0.56802827 * b - 0.54067466 * c + Ca xyz_tips = torch.where(torch.isnan(xyz_tips), Cb, xyz_tips) return xyz_tips, mask # process ideal frames def make_frame(X, Y): Xn = X / torch.linalg.norm(X) Y = Y - torch.dot(Y, Xn) * Xn Yn = Y / torch.linalg.norm(Y) Z = torch.cross(Xn, Yn) Zn = Z / torch.linalg.norm(Z) return torch.stack((Xn, Yn, Zn), dim=-1) def cross_product_matrix(u): B, L = u.shape[:2] matrix = torch.zeros((B, L, 3, 3), device=u.device) matrix[:, :, 0, 1] = -u[..., 2] matrix[:, :, 0, 2] = u[..., 1] matrix[:, :, 1, 0] = u[..., 2] matrix[:, :, 1, 2] = -u[..., 0] matrix[:, :, 2, 0] = -u[..., 1] matrix[:, :, 2, 1] = u[..., 0] return matrix # writepdb def writepdb( filename, atoms, seq, binderlen=None, idx_pdb=None, bfacts=None, chain_idx=None ): f = open(filename, "w") ctr = 1 scpu = seq.cpu().squeeze() atomscpu = atoms.cpu().squeeze() if bfacts is None: bfacts = torch.zeros(atomscpu.shape[0]) if idx_pdb is None: idx_pdb = 1 + torch.arange(atomscpu.shape[0]) Bfacts = torch.clamp(bfacts.cpu(), 0, 1) for i, s in enumerate(scpu): if chain_idx is None: if binderlen is not None: if i < binderlen: chain = "A" else: chain = "B" elif binderlen is None: chain = "A" else: chain = chain_idx[i] if len(atomscpu.shape) == 2: f.write( "%-6s%5s %4s %3s %s%4d %8.3f%8.3f%8.3f%6.2f%6.2f\n" % ( "ATOM", ctr, " CA ", num2aa[s], chain, idx_pdb[i], atomscpu[i, 0], atomscpu[i, 1], atomscpu[i, 2], 1.0, Bfacts[i], ) ) ctr += 1 elif atomscpu.shape[1] == 3: for j, atm_j in enumerate([" N ", " CA ", " C "]): f.write( "%-6s%5s %4s %3s %s%4d %8.3f%8.3f%8.3f%6.2f%6.2f\n" % ( "ATOM", ctr, atm_j, num2aa[s], chain, idx_pdb[i], atomscpu[i, j, 0], atomscpu[i, j, 1], atomscpu[i, j, 2], 1.0, Bfacts[i], ) ) ctr += 1 elif atomscpu.shape[1] == 4: for j, atm_j in enumerate([" N ", " CA ", " C ", " O "]): f.write( "%-6s%5s %4s %3s %s%4d %8.3f%8.3f%8.3f%6.2f%6.2f\n" % ( "ATOM", ctr, atm_j, num2aa[s], chain, idx_pdb[i], atomscpu[i, j, 0], atomscpu[i, j, 1], atomscpu[i, j, 2], 1.0, Bfacts[i], ) ) ctr += 1 else: natoms = atomscpu.shape[1] if natoms != 14 and natoms != 27: print("bad size!", atoms.shape) assert False atms = aa2long[s] # his prot hack if ( s == 8 and torch.linalg.norm(atomscpu[i, 9, :] - atomscpu[i, 5, :]) < 1.7 ): atms = ( " N ", " CA ", " C ", " O ", " CB ", " CG ", " NE2", " CD2", " CE1", " ND1", None, None, None, None, " H ", " HA ", "1HB ", "2HB ", " HD2", " HE1", " HD1", None, None, None, None, None, None, ) # his_d for j, atm_j in enumerate(atms): if ( j < natoms and atm_j is not None ): # and not torch.isnan(atomscpu[i,j,:]).any()): f.write( "%-6s%5s %4s %3s %s%4d %8.3f%8.3f%8.3f%6.2f%6.2f\n" % ( "ATOM", ctr, atm_j, num2aa[s], chain, idx_pdb[i], atomscpu[i, j, 0], atomscpu[i, j, 1], atomscpu[i, j, 2], 1.0, Bfacts[i], ) ) ctr += 1 # resolve tip atom indices tip_indices = torch.full((22,), 0) for i in range(22): tip_atm = aa2tip[i] atm_long = aa2long[i] tip_indices[i] = atm_long.index(tip_atm) # resolve torsion indices torsion_indices = torch.full((22, 4, 4), 0) torsion_can_flip = torch.full((22, 10), False, dtype=torch.bool) for i in range(22): i_l, i_a = aa2long[i], aa2longalt[i] for j in range(4): if torsions[i][j] is None: continue for k in range(4): a = torsions[i][j][k] torsion_indices[i, j, k] = i_l.index(a) if i_l.index(a) != i_a.index(a): torsion_can_flip[i, 3 + j] = True ##bb tors never flip # HIS is a special case torsion_can_flip[8, 4] = False # build the mapping from atoms in the full rep (Nx27) to the "alternate" rep allatom_mask = torch.zeros((22, 27), dtype=torch.bool) long2alt = torch.zeros((22, 27), dtype=torch.long) for i in range(22): i_l, i_lalt = aa2long[i], aa2longalt[i] for j, a in enumerate(i_l): if a is None: long2alt[i, j] = j else: long2alt[i, j] = i_lalt.index(a) allatom_mask[i, j] = True # bond graph traversal num_bonds = torch.zeros((22, 27, 27), dtype=torch.long) for i in range(22): num_bonds_i = np.zeros((27, 27)) for bnamei, bnamej in aabonds[i]: bi, bj = aa2long[i].index(bnamei), aa2long[i].index(bnamej) num_bonds_i[bi, bj] = 1 num_bonds_i = scipy.sparse.csgraph.shortest_path(num_bonds_i, directed=False) num_bonds_i[num_bonds_i >= 4] = 4 num_bonds[i, ...] = torch.tensor(num_bonds_i) # LJ/LK scoring parameters ljlk_parameters = torch.zeros((22, 27, 5), dtype=torch.float) lj_correction_parameters = torch.zeros( (22, 27, 4), dtype=bool ) # donor/acceptor/hpol/disulf for i in range(22): for j, a in enumerate(aa2type[i]): if a is not None: ljlk_parameters[i, j, :] = torch.tensor(type2ljlk[a]) lj_correction_parameters[i, j, 0] = (type2hb[a] == HbAtom.DO) + ( type2hb[a] == HbAtom.DA ) lj_correction_parameters[i, j, 1] = (type2hb[a] == HbAtom.AC) + ( type2hb[a] == HbAtom.DA ) lj_correction_parameters[i, j, 2] = type2hb[a] == HbAtom.HP lj_correction_parameters[i, j, 3] = a == "SH1" or a == "HS" # hbond scoring parameters def donorHs(D, bonds, atoms): dHs = [] for i, j in bonds: if i == D: idx_j = atoms.index(j) if idx_j >= 14: # if atom j is a hydrogen dHs.append(idx_j) if j == D: idx_i = atoms.index(i) if idx_i >= 14: # if atom j is a hydrogen dHs.append(idx_i) assert len(dHs) > 0 return dHs def acceptorBB0(A, hyb, bonds, atoms): if hyb == HbHybType.SP2: for i, j in bonds: if i == A: B = atoms.index(j) if B < 14: break if j == A: B = atoms.index(i) if B < 14: break for i, j in bonds: if i == atoms[B]: B0 = atoms.index(j) if B0 < 14: break if j == atoms[B]: B0 = atoms.index(i) if B0 < 14: break elif hyb == HbHybType.SP3 or hyb == HbHybType.RING: for i, j in bonds: if i == A: B = atoms.index(j) if B < 14: break if j == A: B = atoms.index(i) if B < 14: break for i, j in bonds: if i == A and j != atoms[B]: B0 = atoms.index(j) break if j == A and i != atoms[B]: B0 = atoms.index(i) break return B, B0 hbtypes = torch.full( (22, 27, 3), -1, dtype=torch.long ) # (donortype, acceptortype, acchybtype) hbbaseatoms = torch.full( (22, 27, 2), -1, dtype=torch.long ) # (B,B0) for acc; (D,-1) for don hbpolys = torch.zeros( (HbDonType.NTYPES, HbAccType.NTYPES, 3, 15) ) # weight,xmin,xmax,ymin,ymax,c9,...,c0 for i in range(22): for j, a in enumerate(aa2type[i]): if a in type2dontype: j_hs = donorHs(aa2long[i][j], aabonds[i], aa2long[i]) for j_h in j_hs: hbtypes[i, j_h, 0] = type2dontype[a] hbbaseatoms[i, j_h, 0] = j if a in type2acctype: j_b, j_b0 = acceptorBB0( aa2long[i][j], type2hybtype[a], aabonds[i], aa2long[i] ) hbtypes[i, j, 1] = type2acctype[a] hbtypes[i, j, 2] = type2hybtype[a] hbbaseatoms[i, j, 0] = j_b hbbaseatoms[i, j, 1] = j_b0 for i in range(HbDonType.NTYPES): for j in range(HbAccType.NTYPES): weight = dontype2wt[i] * acctype2wt[j] pdist, pbah, pahd = hbtypepair2poly[(i, j)] xrange, yrange, coeffs = hbpolytype2coeffs[pdist] hbpolys[i, j, 0, 0] = weight hbpolys[i, j, 0, 1:3] = torch.tensor(xrange) hbpolys[i, j, 0, 3:5] = torch.tensor(yrange) hbpolys[i, j, 0, 5:] = torch.tensor(coeffs) xrange, yrange, coeffs = hbpolytype2coeffs[pahd] hbpolys[i, j, 1, 0] = weight hbpolys[i, j, 1, 1:3] = torch.tensor(xrange) hbpolys[i, j, 1, 3:5] = torch.tensor(yrange) hbpolys[i, j, 1, 5:] = torch.tensor(coeffs) xrange, yrange, coeffs = hbpolytype2coeffs[pbah] hbpolys[i, j, 2, 0] = weight hbpolys[i, j, 2, 1:3] = torch.tensor(xrange) hbpolys[i, j, 2, 3:5] = torch.tensor(yrange) hbpolys[i, j, 2, 5:] = torch.tensor(coeffs) # kinematic parameters base_indices = torch.full((22, 27), 0, dtype=torch.long) xyzs_in_base_frame = torch.ones((22, 27, 4)) RTs_by_torsion = torch.eye(4).repeat(22, 7, 1, 1) reference_angles = torch.ones((22, 3, 2)) for i in range(22): i_l = aa2long[i] for name, base, coords in ideal_coords[i]: idx = i_l.index(name) base_indices[i, idx] = base xyzs_in_base_frame[i, idx, :3] = torch.tensor(coords) # omega frame RTs_by_torsion[i, 0, :3, :3] = torch.eye(3) RTs_by_torsion[i, 0, :3, 3] = torch.zeros(3) # phi frame RTs_by_torsion[i, 1, :3, :3] = make_frame( xyzs_in_base_frame[i, 0, :3] - xyzs_in_base_frame[i, 1, :3], torch.tensor([1.0, 0.0, 0.0]), ) RTs_by_torsion[i, 1, :3, 3] = xyzs_in_base_frame[i, 0, :3] # psi frame RTs_by_torsion[i, 2, :3, :3] = make_frame( xyzs_in_base_frame[i, 2, :3] - xyzs_in_base_frame[i, 1, :3], xyzs_in_base_frame[i, 1, :3] - xyzs_in_base_frame[i, 0, :3], ) RTs_by_torsion[i, 2, :3, 3] = xyzs_in_base_frame[i, 2, :3] # chi1 frame if torsions[i][0] is not None: a0, a1, a2 = torsion_indices[i, 0, 0:3] RTs_by_torsion[i, 3, :3, :3] = make_frame( xyzs_in_base_frame[i, a2, :3] - xyzs_in_base_frame[i, a1, :3], xyzs_in_base_frame[i, a0, :3] - xyzs_in_base_frame[i, a1, :3], ) RTs_by_torsion[i, 3, :3, 3] = xyzs_in_base_frame[i, a2, :3] # chi2~4 frame for j in range(1, 4): if torsions[i][j] is not None: a2 = torsion_indices[i, j, 2] if (i == 18 and j == 2) or ( i == 8 and j == 2 ): # TYR CZ-OH & HIS CE1-HE1 a special case a0, a1 = torsion_indices[i, j, 0:2] RTs_by_torsion[i, 3 + j, :3, :3] = make_frame( xyzs_in_base_frame[i, a2, :3] - xyzs_in_base_frame[i, a1, :3], xyzs_in_base_frame[i, a0, :3] - xyzs_in_base_frame[i, a1, :3], ) else: RTs_by_torsion[i, 3 + j, :3, :3] = make_frame( xyzs_in_base_frame[i, a2, :3], torch.tensor([-1.0, 0.0, 0.0]), ) RTs_by_torsion[i, 3 + j, :3, 3] = xyzs_in_base_frame[i, a2, :3] # CB/CG angles NCr = 0.5 * (xyzs_in_base_frame[i, 0, :3] + xyzs_in_base_frame[i, 2, :3]) CAr = xyzs_in_base_frame[i, 1, :3] CBr = xyzs_in_base_frame[i, 4, :3] CGr = xyzs_in_base_frame[i, 5, :3] reference_angles[i, 0, :] = th_ang_v(CBr - CAr, NCr - CAr) NCp = xyzs_in_base_frame[i, 2, :3] - xyzs_in_base_frame[i, 0, :3] NCpp = NCp - torch.dot(NCp, NCr) / torch.dot(NCr, NCr) * NCr reference_angles[i, 1, :] = th_ang_v(CBr - CAr, NCpp) reference_angles[i, 2, :] = th_ang_v(CGr, torch.tensor([-1.0, 0.0, 0.0])) N_BACKBONE_ATOMS = 3 N_HEAVY = 14 def writepdb_multi( filename, atoms_stack, bfacts, seq_stack, backbone_only=False, chain_ids=None, use_hydrogens=True, ): """ Function for writing multiple structural states of the same sequence into a single pdb file. """ f = open(filename, "w") if seq_stack.ndim != 2: T = atoms_stack.shape[0] seq_stack = torch.tile(seq_stack, (T, 1)) seq_stack = seq_stack.cpu() for atoms, scpu in zip(atoms_stack, seq_stack): ctr = 1 atomscpu = atoms.cpu() Bfacts = torch.clamp(bfacts.cpu(), 0, 1) for i, s in enumerate(scpu): atms = aa2long[s] for j, atm_j in enumerate(atms): if backbone_only and j >= N_BACKBONE_ATOMS: break if not use_hydrogens and j >= N_HEAVY: break if (atm_j is None) or (torch.all(torch.isnan(atomscpu[i, j]))): continue chain_id = "A" if chain_ids is not None: chain_id = chain_ids[i] f.write( "%-6s%5s %4s %3s %s%4d %8.3f%8.3f%8.3f%6.2f%6.2f\n" % ( "ATOM", ctr, atm_j, num2aa[s], chain_id, i + 1, atomscpu[i, j, 0], atomscpu[i, j, 1], atomscpu[i, j, 2], 1.0, Bfacts[i], ) ) ctr += 1 f.write("ENDMDL\n") def calc_rmsd(xyz1, xyz2, eps=1e-6): """ Calculates RMSD between two sets of atoms (L, 3) """ # center to CA centroid xyz1 = xyz1 - xyz1.mean(0) xyz2 = xyz2 - xyz2.mean(0) # Computation of the covariance matrix C = xyz2.T @ xyz1 # Compute otimal rotation matrix using SVD V, S, W = np.linalg.svd(C) # get sign to ensure right-handedness d = np.ones([3,3]) d[:,-1] = np.sign(np.linalg.det(V)*np.linalg.det(W)) # Rotation matrix U U = (d*V) @ W # Rotate xyz2 xyz2_ = xyz2 @ U L = xyz2_.shape[0] rmsd = np.sqrt(np.sum((xyz2_-xyz1)*(xyz2_-xyz1), axis=(0,1)) / L + eps) return rmsd, U