Geraldine commited on
Commit
c123d27
·
verified ·
1 Parent(s): d611aa2

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +102 -154
README.md CHANGED
@@ -1,199 +1,147 @@
1
  ---
2
  library_name: transformers
3
- tags: []
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
10
 
 
 
 
 
11
 
12
- ## Model Details
13
 
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
 
76
  ## Training Details
77
 
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
 
84
- ### Training Procedure
85
 
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
 
 
87
 
88
- #### Preprocessing [optional]
89
 
90
- [More Information Needed]
 
 
 
 
 
91
 
 
92
 
93
- #### Training Hyperparameters
 
 
 
 
 
 
 
 
94
 
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
 
97
- #### Speeds, Sizes, Times [optional]
 
 
98
 
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
 
101
- [More Information Needed]
102
 
103
- ## Evaluation
104
 
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
 
107
- ### Testing Data, Factors & Metrics
 
 
108
 
109
- #### Testing Data
110
 
111
- <!-- This should link to a Dataset Card if possible. -->
 
 
 
112
 
113
- [More Information Needed]
 
 
 
 
 
 
114
 
115
- #### Factors
116
 
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
 
 
 
 
 
118
 
119
- [More Information Needed]
 
120
 
121
- #### Metrics
122
 
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
 
 
 
 
124
 
125
- [More Information Needed]
 
 
 
 
 
 
126
 
127
- ### Results
 
 
 
128
 
129
- [More Information Needed]
 
130
 
131
- #### Summary
132
 
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
 
171
  ## Citation [optional]
172
 
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
  **BibTeX:**
176
 
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
 
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
 
1
  ---
2
  library_name: transformers
3
+ license: llama3.2
4
  ---
5
 
6
+ # FineLlama-3.2-3B-Instruct-ead
7
 
8
+ This repository contains a fine-tuned version of LLaMa-3.2-3B-Instruct specifically trained to understand and generate EAD (Encoded Archival Description) XML format for archival records description.
9
 
10
+ ## Model Description
11
 
12
+ * **Base Model**: meta-llama/Llama-3.2-3B-Instruct
13
+ * **Training Dataset**: [Geraldine/Ead-Instruct-38k](https://huggingface.co/datasets/Geraldine/Ead-Instruct-38k)
14
+ * **Task**: Generation of EAD/XML compliant archival descriptions
15
+ * **Training Type**: Instruction fine-tuning with PEFT (Parameter Efficient Fine-Tuning) using LoRA
16
 
17
+ ## Key Features
18
 
19
+ * Specialized in generating EAD/XML format for archival metadata
20
+ * Trained on a comprehensive dataset of EAD/XML examples
21
+ * Optimized for archival description tasks
22
+ * Memory efficient through 4-bit quantization
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23
 
24
  ## Training Details
25
 
26
+ ### Technical Specifications
 
 
 
 
27
 
28
+ * **Quantization**: 4-bit quantization using bitsandbytes
29
 
30
+ * NF4 quantization type
31
+ * Double quantization enabled
32
+ * bfloat16 compute dtype
33
 
34
+ ### LoRA Configuration
35
 
36
+ ```
37
+ - r: 256
38
+ - alpha: 128
39
+ - dropout: 0.05
40
+ - target modules: all-linear
41
+ ```
42
 
43
+ ### Training parameters
44
 
45
+ ```
46
+ - Epochs: 3
47
+ - Batch size: 3
48
+ - Gradient accumulation steps: 2
49
+ - Learning rate: 2e-4
50
+ - Warmup ratio: 0.03
51
+ - Max sequence length: 4096
52
+ - Scheduler: Constant
53
+ ```
54
 
55
+ ### Training Infrastructure
56
 
57
+ * Libraries: transformers, peft, trl
58
+ * Mixed Precision: FP16/BF16 (based on hardware support)
59
+ * Optimizer: fused adamw
60
 
61
+ ### Training Notebook
62
 
63
+ The training Notebook is available on [Kaggle](https://www.kaggle.com/code/geraldinegeoffroy/ead-finetune-llama-3-2-3b-instruct)
64
 
65
+ ## Usage
66
 
67
+ ### Installation
68
 
69
+ ```
70
+ pip install transformers torch bitsandbytes
71
+ ```
72
 
73
+ ### Loading the model
74
 
75
+ ```
76
+ from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
77
+ import torch
78
+ from peft import PeftModel, PeftConfig
79
 
80
+ # Configure 4-bit quantization
81
+ bnb_config = BitsAndBytesConfig(
82
+ load_in_4bit=True,
83
+ bnb_4bit_use_double_quant=True,
84
+ bnb_4bit_quant_type="nf4",
85
+ bnb_4bit_compute_dtype=torch.bfloat16
86
+ )
87
 
88
+ model_name = "Geraldine/FineLlama-3.2-3B-Instruct-ead"
89
 
90
+ # Load model and tokenizer
91
+ model = AutoModelForCausalLM.from_pretrained(
92
+ model_name,
93
+ torch_dtype="auto",
94
+ quantization_config=bnb_config
95
+ ).to("cuda")
96
 
97
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
98
+ ```
99
 
100
+ ### Example usage
101
 
102
+ ```
103
+ messages = [
104
+ {"role": "system", "content": "You are an expert in EAD/XML generation for archival records metadata."},
105
+ {"role": "user", "content": "Generate a minimal and compliant <eadheader> template with all required EAD/XML tags"},
106
+ ]
107
 
108
+ inputs = tokenizer.apply_chat_template(
109
+ messages,
110
+ return_dict=True,
111
+ tokenize = True,
112
+ add_generation_prompt = True, # Must add for generation
113
+ return_tensors = "pt",
114
+ ).to("cuda")
115
 
116
+ outputs = model.generate(**inputs,
117
+ max_new_tokens = 4096,
118
+ pad_token_id=tokenizer.eos_token_id,
119
+ use_cache = True,)
120
 
121
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
122
+ ```
123
 
124
+ ## Limitations
125
 
126
+ * The model is specifically trained for EAD/XML format and may not perform well on general archival tasks
127
+ * Performance depends on the quality and specificity of the input prompts
128
+ * Maximum sequence length is limited to 4096 tokens
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
129
 
130
  ## Citation [optional]
131
 
 
 
132
  **BibTeX:**
133
 
134
+ ```
135
+ @misc{ead-llama,
136
+ author = {Géraldine Geoffroy},
137
+ title = {EAD-XML LLaMa: Fine-tuned LLaMa Model for Archival Description},
138
+ year = {2024},
139
+ publisher = {HuggingFace},
140
+ journal = {HuggingFace Repository},
141
+ howpublished = {\url{https://huggingface.co/Geraldine/FineLlama-3.2-3B-Instruct-ead}}
142
+ }
143
+ ```
 
 
 
 
 
 
 
 
 
144
 
145
+ ## Licence
146
 
147
+ This model is subject to the same license as the base LLaMa model. Please refer to Meta's LLaMa license for usage terms and conditions.