Geraldine commited on
Commit
d2725dd
·
verified ·
1 Parent(s): 7df55b1

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +80 -0
README.md ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: llama3.2
3
+ ---
4
+
5
+ # FineLlama-3.2-3B-Instruct-ead-GGUF
6
+
7
+ GGUF quantized versions of [Geraldine/FineLlama-3.2-3B-Instruct-ead](https://huggingface.co/Geraldine/FineLlama-3.2-3B-Instruct-ead) model, optimized for efficient inference using llama.cpp.
8
+
9
+ ## Model Description
10
+
11
+ - **Base Model**: FineLlama-3.2-3B-Instruct-ead
12
+ - **Quantization**: Various GGUF formats
13
+ - **Purpose**: EAD tag generation and archival metadata encoding
14
+ - **Framework**: llama.cpp
15
+
16
+ ## Available Variants
17
+
18
+ The following quantized versions are available:
19
+
20
+ - Q2_K variant (1.36 GB)
21
+ - Q3_K_M variant (1.69 GB)
22
+ - Q4_K_M variant (2.02 GB)
23
+ - Q5_K_M variant (2.32 GB)
24
+ - Q6_K variant (2.64 GB)
25
+ - Q8_0 variant (3.42 GB)
26
+ - FP16 variant (6.43 GB)
27
+
28
+ ## Installation
29
+
30
+ 1. Download the desired GGUF model variant
31
+ 2. Install llama.cpp following the official instructions
32
+ 3. Place the model file in your llama.cpp models directory
33
+
34
+ ## Usage
35
+
36
+ ```bash
37
+ # Example using Q4_K_M quantization
38
+ ./main -m models/FineLlama-3.2-3B-Instruct-ead-Q4_K_M.gguf -n 1024 --repeat_penalty 1.1
39
+
40
+ # Example using server mode
41
+ ./server -m models/FineLlama-3.2-3B-Instruct-ead-Q4_K_M.gguf -c 4096
42
+ ```
43
+
44
+ ```python
45
+ # Example using llama-cpp-python library
46
+ from llama_cpp import Llama
47
+ query = "..."
48
+ llm = Llama.from_pretrained(
49
+ repo_id="Geraldine/FineLlama-3.2-3B-Instruct-ead-GGUF",
50
+ filename="*Q8_0.gguf",
51
+ n_ctx=1024,
52
+ verbose=False
53
+ )
54
+ output = llm.create_chat_completion(
55
+         messages = [
56
+             {"role": "system", "content": "You are an archivist expert in EAD format."},
57
+             {
58
+                 "role": "user",
59
+                 "content": query
60
+             }
61
+         ]
62
+ )
63
+ print(output["choices"][0]["message"]["content"])
64
+ ```
65
+
66
+ ## Quantization Details
67
+
68
+ - Q2_K: 2-bit quantization, optimized for efficiency
69
+ - Q3_K_M: 3-bit quantization with medium precision
70
+ - Q4_K_M: 4-bit quantization with medium precision
71
+ - Q5_K_M: 5-bit quantization with medium precision
72
+ - Q6_K: 6-bit quantization
73
+ - Q8_0: 8-bit quantization, highest precision among quantized versions
74
+ - FP16: Full 16-bit floating point, no quantization
75
+
76
+ ## Performance Considerations
77
+
78
+ - Lower bit quantizations (Q2_K, Q3_K_M) offer smaller file sizes but may have slightly reduced accuracy
79
+ - Higher bit quantizations (Q6_K, Q8_0) provide better accuracy but require more storage and memory
80
+ - FP16 provides full precision but requires significantly more resources