Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: llama3.2
|
3 |
+
---
|
4 |
+
|
5 |
+
# FineLlama-3.2-3B-Instruct-ead-GGUF
|
6 |
+
|
7 |
+
GGUF quantized versions of [Geraldine/FineLlama-3.2-3B-Instruct-ead](https://huggingface.co/Geraldine/FineLlama-3.2-3B-Instruct-ead) model, optimized for efficient inference using llama.cpp.
|
8 |
+
|
9 |
+
## Model Description
|
10 |
+
|
11 |
+
- **Base Model**: FineLlama-3.2-3B-Instruct-ead
|
12 |
+
- **Quantization**: Various GGUF formats
|
13 |
+
- **Purpose**: EAD tag generation and archival metadata encoding
|
14 |
+
- **Framework**: llama.cpp
|
15 |
+
|
16 |
+
## Available Variants
|
17 |
+
|
18 |
+
The following quantized versions are available:
|
19 |
+
|
20 |
+
- Q2_K variant (1.36 GB)
|
21 |
+
- Q3_K_M variant (1.69 GB)
|
22 |
+
- Q4_K_M variant (2.02 GB)
|
23 |
+
- Q5_K_M variant (2.32 GB)
|
24 |
+
- Q6_K variant (2.64 GB)
|
25 |
+
- Q8_0 variant (3.42 GB)
|
26 |
+
- FP16 variant (6.43 GB)
|
27 |
+
|
28 |
+
## Installation
|
29 |
+
|
30 |
+
1. Download the desired GGUF model variant
|
31 |
+
2. Install llama.cpp following the official instructions
|
32 |
+
3. Place the model file in your llama.cpp models directory
|
33 |
+
|
34 |
+
## Usage
|
35 |
+
|
36 |
+
```bash
|
37 |
+
# Example using Q4_K_M quantization
|
38 |
+
./main -m models/FineLlama-3.2-3B-Instruct-ead-Q4_K_M.gguf -n 1024 --repeat_penalty 1.1
|
39 |
+
|
40 |
+
# Example using server mode
|
41 |
+
./server -m models/FineLlama-3.2-3B-Instruct-ead-Q4_K_M.gguf -c 4096
|
42 |
+
```
|
43 |
+
|
44 |
+
```python
|
45 |
+
# Example using llama-cpp-python library
|
46 |
+
from llama_cpp import Llama
|
47 |
+
query = "..."
|
48 |
+
llm = Llama.from_pretrained(
|
49 |
+
repo_id="Geraldine/FineLlama-3.2-3B-Instruct-ead-GGUF",
|
50 |
+
filename="*Q8_0.gguf",
|
51 |
+
n_ctx=1024,
|
52 |
+
verbose=False
|
53 |
+
)
|
54 |
+
output = llm.create_chat_completion(
|
55 |
+
messages = [
|
56 |
+
{"role": "system", "content": "You are an archivist expert in EAD format."},
|
57 |
+
{
|
58 |
+
"role": "user",
|
59 |
+
"content": query
|
60 |
+
}
|
61 |
+
]
|
62 |
+
)
|
63 |
+
print(output["choices"][0]["message"]["content"])
|
64 |
+
```
|
65 |
+
|
66 |
+
## Quantization Details
|
67 |
+
|
68 |
+
- Q2_K: 2-bit quantization, optimized for efficiency
|
69 |
+
- Q3_K_M: 3-bit quantization with medium precision
|
70 |
+
- Q4_K_M: 4-bit quantization with medium precision
|
71 |
+
- Q5_K_M: 5-bit quantization with medium precision
|
72 |
+
- Q6_K: 6-bit quantization
|
73 |
+
- Q8_0: 8-bit quantization, highest precision among quantized versions
|
74 |
+
- FP16: Full 16-bit floating point, no quantization
|
75 |
+
|
76 |
+
## Performance Considerations
|
77 |
+
|
78 |
+
- Lower bit quantizations (Q2_K, Q3_K_M) offer smaller file sizes but may have slightly reduced accuracy
|
79 |
+
- Higher bit quantizations (Q6_K, Q8_0) provide better accuracy but require more storage and memory
|
80 |
+
- FP16 provides full precision but requires significantly more resources
|