|
--- |
|
license: mit |
|
datasets: |
|
- bookcorpus |
|
- wikipedia |
|
language: |
|
- en |
|
metrics: |
|
- glue |
|
pipeline_tag: text-classification |
|
--- |
|
Evaluate on MNLI: |
|
```python |
|
from transformers import ( |
|
default_data_collator, |
|
AutoTokenizer, |
|
AutoModelForSequenceClassification, |
|
Trainer, |
|
) |
|
from datasets import load_dataset |
|
|
|
import functools |
|
|
|
from utils import compute_metrics, preprocess_function |
|
|
|
model_name = "George-Ogden/roberta-large-cased-finetuned-mnli" |
|
model = AutoModelForSequenceClassification.from_pretrained(model_name) |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
trainer = Trainer( |
|
model=model, |
|
eval_dataset="mnli", |
|
tokenizer=tokenizer, |
|
compute_metrics=compute_metrics, |
|
data_collator=default_data_collator, |
|
) |
|
|
|
raw_datasets = load_dataset( |
|
"glue", |
|
"mnli", |
|
).map(functools.partial(preprocess_function, tokenizer), batched=True) |
|
|
|
tasks = ["mnli", "mnli-mm"] |
|
eval_datasets = [ |
|
raw_datasets["validation_matched"], |
|
raw_datasets["validation_mismatched"], |
|
] |
|
|
|
for layers in reversed(range(model.num_layers + 1)): |
|
for eval_dataset, task in zip(eval_datasets, tasks): |
|
metrics = trainer.evaluate(eval_dataset=eval_dataset) |
|
metrics["eval_samples"] = len(eval_dataset) |
|
|
|
if task == "mnli-mm": |
|
metrics = {k + "_mm": v for k, v in metrics.items()} |
|
|
|
trainer.log_metrics(metrics) |
|
``` |