|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" PyTorch GeoV model.""" |
|
import math |
|
from typing import Optional, Tuple, Union |
|
|
|
import torch |
|
import torch.utils.checkpoint |
|
from torch import nn |
|
from torch.nn import CrossEntropyLoss |
|
|
|
from transformers.file_utils import ( |
|
add_code_sample_docstrings, |
|
add_start_docstrings, |
|
add_start_docstrings_to_model_forward, |
|
replace_return_docstrings, |
|
) |
|
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast |
|
from transformers.modeling_utils import PreTrainedModel |
|
from transformers.utils import logging |
|
from .configuration_geov import GeoVConfig |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
_CHECKPOINT_FOR_DOC = "GeoV/GeoV-9b" |
|
_REAL_CHECKPOINT_FOR_DOC = "GeoV/GeoV-9b" |
|
_CONFIG_FOR_DOC = "GeoVConfig" |
|
|
|
GEOV_PRETRAINED_MODEL_ARCHIVE_LIST = [ |
|
"GeoV/GeoV-9b", |
|
|
|
] |
|
|
|
|
|
class RotaryEmbedding(torch.nn.Module): |
|
def __init__(self, dim, base=10000): |
|
super().__init__() |
|
inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float() / dim)) |
|
self.register_buffer("inv_freq", inv_freq) |
|
|
|
self.max_seq_len_cached = -1 |
|
|
|
def forward(self, x, seq_len=None): |
|
|
|
|
|
if seq_len > self.max_seq_len_cached: |
|
self.max_seq_len_cached = seq_len |
|
t = torch.arange(self.max_seq_len_cached, device=x.device, dtype=self.inv_freq.dtype) |
|
freqs = torch.einsum("i,j->ij", t, self.inv_freq) |
|
|
|
emb = torch.cat((freqs, freqs), dim=-1).to(x.device) |
|
self.cos_cached = emb.cos()[None, None, :, :].to(x.dtype) |
|
self.sin_cached = emb.sin()[None, None, :, :].to(x.dtype) |
|
return self.cos_cached.to(x.device), self.sin_cached.to(x.device) |
|
|
|
|
|
def rotate_half(x): |
|
"""Rotates half the hidden dims of the input.""" |
|
x1 = x[..., : x.shape[-1] // 2] |
|
x2 = x[..., x.shape[-1] // 2:] |
|
return torch.cat((-x2, x1), dim=-1) |
|
|
|
|
|
def apply_rotary_pos_emb(q, cos, sin, position_ids): |
|
"""Apply positional embeddings""" |
|
gather_indices = position_ids[:, None, :, None] |
|
gather_indices = gather_indices.repeat(1, cos.shape[1], 1, cos.shape[3]) |
|
cos = torch.gather(cos.repeat(gather_indices.shape[0], 1, 1, 1), 2, gather_indices) |
|
sin = torch.gather(sin.repeat(gather_indices.shape[0], 1, 1, 1), 2, gather_indices) |
|
q_embed = (q * cos) + (rotate_half(q) * sin) |
|
return q_embed |
|
|
|
|
|
def apply_rotary_pos_emb_reverse(q, cos, sin, position_ids): |
|
"""Apply positional embeddings in reverse""" |
|
gather_indices = position_ids[:, None, :, None] |
|
gather_indices = gather_indices.repeat(1, cos.shape[1], 1, cos.shape[3]) |
|
cos = torch.gather(cos.repeat(gather_indices.shape[0], 1, 1, 1), 2, gather_indices) |
|
sin = torch.gather(sin.repeat(gather_indices.shape[0], 1, 1, 1), 2, gather_indices) |
|
q_embed = (q * cos) - (rotate_half(q) * sin) |
|
return q_embed |
|
|
|
|
|
class GeoVAttention(nn.Module): |
|
""" |
|
Attention module |
|
""" |
|
|
|
def __init__(self, config): |
|
super().__init__() |
|
self.num_attention_heads = config.num_attention_heads |
|
self.hidden_size = config.hidden_size |
|
self.head_size = self.hidden_size // self.num_attention_heads |
|
max_positions = config.max_position_embeddings |
|
self.register_buffer("causal_mask", torch.tril(torch.ones((max_positions, max_positions), dtype=torch.bool))) |
|
self.rotary_emb = RotaryEmbedding(self.head_size, base=config.rotary_emb_base) |
|
self.qkv = nn.Linear(config.hidden_size, 3 * config.hidden_size) |
|
self.dense = nn.Linear(config.hidden_size, config.hidden_size, bias=False) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.FloatTensor, |
|
attention_mask: torch.FloatTensor, |
|
position_ids: torch.LongTensor, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
layer_past: Optional[Tuple[torch.Tensor]] = None, |
|
use_cache: Optional[bool] = False, |
|
output_attentions: Optional[bool] = False, |
|
): |
|
has_layer_past = layer_past is not None |
|
|
|
|
|
|
|
|
|
qkv = self.qkv(hidden_states) |
|
query, key, value = torch.tensor_split(qkv, 3, dim=-1) |
|
|
|
|
|
query = self._split_heads(query, self.num_attention_heads) |
|
key = self._split_heads(key, self.num_attention_heads) |
|
value = self._split_heads(value, self.num_attention_heads) |
|
|
|
|
|
seq_len = key.shape[-2] |
|
offset = 0 |
|
if has_layer_past: |
|
seq_len += layer_past[0].shape[-2] |
|
|
|
cos, sin = self.rotary_emb(query, seq_len=seq_len) |
|
query = apply_rotary_pos_emb(query, cos, sin, position_ids) |
|
key = apply_rotary_pos_emb(key, cos, sin, position_ids) |
|
value = apply_rotary_pos_emb(value, cos, sin, position_ids) |
|
|
|
|
|
if has_layer_past: |
|
past_key = layer_past[0] |
|
past_value = layer_past[1] |
|
key = torch.cat((past_key, key), dim=-2) |
|
value = torch.cat((past_value, value), dim=-2) |
|
present = (key, value) if use_cache else None |
|
|
|
|
|
attn_output, attn_weights = self._attn(query, key, value, attention_mask, head_mask) |
|
|
|
attn_output = apply_rotary_pos_emb_reverse(attn_output, cos, sin, position_ids) |
|
|
|
|
|
attn_output = self._merge_heads(attn_output) |
|
attn_output = self.dense(attn_output) |
|
|
|
outputs = (attn_output, present) |
|
if output_attentions: |
|
outputs += (attn_weights,) |
|
|
|
return outputs |
|
|
|
@classmethod |
|
def _split_heads(cls, tensor, num_attention_heads): |
|
""" |
|
Splits hidden dim into num_attention_heads |
|
""" |
|
|
|
new_shape = tensor.shape[:-1] + (num_attention_heads, tensor.shape[-1] // num_attention_heads) |
|
|
|
tensor = tensor.view(new_shape) |
|
|
|
tensor = tensor.permute(0, 2, 1, 3) |
|
return tensor |
|
|
|
@classmethod |
|
def _merge_heads(cls, tensor): |
|
""" |
|
Merges heads |
|
""" |
|
|
|
tensor = tensor.permute(0, 2, 1, 3).contiguous() |
|
|
|
tensor = tensor.view(*tensor.shape[:2], tensor.shape[2] * tensor.shape[3]) |
|
|
|
return tensor |
|
|
|
def _attn(self, query, key, value, attention_mask=None, head_mask=None): |
|
|
|
|
|
batch_size, num_attention_heads, query_length, attn_head_size = query.shape |
|
key_length = key.shape[-2] |
|
|
|
causal_mask = self.causal_mask[None, None, key_length - query_length: key_length, :key_length] |
|
|
|
attn_scores = torch.einsum("bhid,bhjd->bhij", query, key) / math.sqrt(attn_head_size) |
|
|
|
attn_scores.masked_fill_(causal_mask == 0, torch.finfo(attn_scores.dtype).min) |
|
|
|
if attention_mask is not None: |
|
|
|
attn_scores = attn_scores + attention_mask |
|
|
|
attn_weights = nn.functional.softmax(attn_scores, dim=-1) |
|
|
|
|
|
if head_mask is not None: |
|
attn_weights = attn_weights * head_mask |
|
|
|
attn_output = torch.matmul(attn_weights, value) |
|
return attn_output, attn_weights |
|
|
|
|
|
class GeoVMLP(nn.Module): |
|
"""Position wise Feed-forward network""" |
|
|
|
def __init__(self, config: "GeoVConfig"): |
|
super().__init__() |
|
self.dense_h_to_4h = nn.Linear(config.hidden_size, config.intermediate_size) |
|
self.dense_2h_to_h = nn.Linear( |
|
config.intermediate_size // 2, config.hidden_size, bias=config.use_extra_biases_ffn |
|
) |
|
self.act = nn.GELU() |
|
|
|
def forward(self, hidden_states): |
|
hidden_states = self.dense_h_to_4h(hidden_states) |
|
|
|
gate, pass_through = torch.tensor_split(hidden_states, 2, dim=-1) |
|
gate = self.act(gate) |
|
hidden_states = gate * pass_through |
|
|
|
hidden_states = self.dense_2h_to_h(hidden_states) |
|
return hidden_states |
|
|
|
|
|
class GeoVLayer(nn.Module): |
|
"""GeoV transformer layer""" |
|
|
|
def __init__(self, config: "GeoVConfig"): |
|
super().__init__() |
|
self.input_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
self.post_attention_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
self.attention = GeoVAttention(config) |
|
self.mlp = GeoVMLP(config) |
|
|
|
def forward( |
|
self, |
|
hidden_states: Optional[torch.FloatTensor], |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
use_cache: Optional[bool] = False, |
|
layer_past: Optional[Tuple[torch.Tensor]] = None, |
|
output_attentions: Optional[bool] = False, |
|
): |
|
attention_layer_outputs = self.attention( |
|
self.input_layernorm(hidden_states), |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
layer_past=layer_past, |
|
head_mask=head_mask, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
) |
|
attn_output = attention_layer_outputs[0] |
|
outputs = attention_layer_outputs[1:] |
|
|
|
attn_output = attn_output + hidden_states |
|
mlp_output = self.mlp(self.post_attention_layernorm(attn_output)) |
|
hidden_states = mlp_output + attn_output |
|
|
|
if use_cache: |
|
outputs = (hidden_states,) + outputs |
|
else: |
|
outputs = (hidden_states,) + outputs[1:] |
|
|
|
return outputs |
|
|
|
|
|
class GeoVPreTrainedModel(PreTrainedModel): |
|
""" |
|
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained |
|
models. |
|
""" |
|
|
|
config_class = GeoVConfig |
|
base_model_prefix = "geov" |
|
supports_gradient_checkpointing = True |
|
_no_split_modules = ["GeoVLayer"] |
|
|
|
def _init_weights(self, module): |
|
pass |
|
|
|
def _set_gradient_checkpointing(self, module, value=False): |
|
if isinstance(module, GeoVModel): |
|
module.gradient_checkpointing = value |
|
|
|
|
|
GEOV_START_DOCSTRING = r""" |
|
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use |
|
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and |
|
behavior. |
|
|
|
Parameters: |
|
config ([`~GeoVConfig`]): Model configuration class with all the parameters of the model. |
|
Initializing with a config file does not load the weights associated with the model, only the |
|
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. |
|
""" |
|
|
|
GEOV_INPUTS_DOCSTRING = r""" |
|
Args: |
|
input_ids (`torch.LongTensor` of shape `(batch_size, seq_len)`): |
|
Indices of input sequence tokens in the vocabulary. |
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
[`PreTrainedTokenizer.__call__`] for details. |
|
|
|
[What are input IDs?](../glossary#input-ids) |
|
attention_mask (`torch.FloatTensor` of shape `(batch_size, seq_len)`, *optional*): |
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: |
|
|
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
|
|
[What are attention masks?](../glossary#attention-mask) |
|
position_ids (`torch.LongTensor` of shape `({0})`, *optional*): |
|
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, |
|
config.n_positions - 1]`. |
|
|
|
[What are position IDs?](../glossary#position-ids) |
|
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): |
|
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: |
|
|
|
- 1 indicates the head is **not masked**, |
|
- 0 indicates the head is **masked**. |
|
|
|
past_key_values (`Tuple[Tuple[torch.FloatTensor]]` of length `n_layers`, with each tuple having 2 tensors of shape `(batch_size, n_heads, seq_len - 1, head_size)`, *optional*): |
|
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. |
|
|
|
use_cache (`bool`, *optional*): |
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see |
|
`past_key_values`). |
|
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, seq_len, hidden_size)`, *optional*): |
|
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This |
|
is useful if you want more control over how to convert *input_ids* indices into associated vectors than the |
|
model's internal embedding lookup matrix. |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned |
|
tensors for more detail. |
|
output_hidden_states (`bool`, *optional*): |
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for |
|
more detail. |
|
return_dict (`bool`, *optional*): |
|
Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. |
|
""" |
|
|
|
|
|
@add_start_docstrings( |
|
"The bare GeoV Model transformer outputting raw hidden-states without any specific head on top.", |
|
GEOV_START_DOCSTRING, |
|
) |
|
class GeoVModel(GeoVPreTrainedModel): |
|
def __init__(self, config: "GeoVConfig"): |
|
super().__init__(config) |
|
self.config = config |
|
|
|
self.embed_in = nn.Embedding(config.vocab_size, config.hidden_size) |
|
self.layers = nn.ModuleList([GeoVLayer(config) for _ in range(config.num_hidden_layers)]) |
|
self.final_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
|
|
self.embed_in.to(torch.bfloat16) |
|
self.layers.to(torch.bfloat16) |
|
|
|
self.gradient_checkpointing = False |
|
|
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.embed_in |
|
|
|
def set_input_embeddings(self, value): |
|
self.embed_in = value |
|
|
|
@add_start_docstrings_to_model_forward(GEOV_INPUTS_DOCSTRING) |
|
@add_code_sample_docstrings( |
|
checkpoint=_CHECKPOINT_FOR_DOC, |
|
real_checkpoint=_REAL_CHECKPOINT_FOR_DOC, |
|
output_type=BaseModelOutputWithPast, |
|
config_class=_CONFIG_FOR_DOC, |
|
) |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, BaseModelOutputWithPast]: |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
|
|
if input_ids is not None and inputs_embeds is not None: |
|
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") |
|
elif input_ids is not None: |
|
input_shape = input_ids.size() |
|
elif inputs_embeds is not None: |
|
input_shape = inputs_embeds.size()[:-1] |
|
else: |
|
raise ValueError("You have to specify either input_ids or inputs_embeds") |
|
|
|
batch_size, seq_length = input_shape |
|
|
|
if past_key_values is None: |
|
past_length = 0 |
|
past_key_values = tuple([None] * self.config.num_hidden_layers) |
|
else: |
|
past_length = past_key_values[0][0].size(-2) |
|
|
|
if position_ids is None: |
|
device = input_ids.device if input_ids is not None else inputs_embeds.device |
|
position_ids = torch.arange(past_length, seq_length + past_length, dtype=torch.long, device=device) |
|
position_ids = position_ids.unsqueeze(0).view(-1, seq_length) |
|
else: |
|
position_ids = position_ids.view(-1, seq_length).long() |
|
|
|
|
|
if attention_mask is not None: |
|
assert batch_size > 0, "batch_size has to be defined and > 0" |
|
attention_mask = attention_mask.view(batch_size, -1) |
|
|
|
|
|
|
|
|
|
|
|
attention_mask = attention_mask[:, None, None, :] |
|
|
|
|
|
|
|
|
|
|
|
|
|
attention_mask = attention_mask.to(dtype=self.dtype) |
|
attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min |
|
|
|
|
|
|
|
|
|
|
|
|
|
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) |
|
|
|
if inputs_embeds is None: |
|
inputs_embeds = self.embed_in(input_ids) |
|
|
|
hidden_states = inputs_embeds |
|
|
|
if self.gradient_checkpointing and self.training: |
|
if use_cache: |
|
logger.warning( |
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." |
|
) |
|
use_cache = False |
|
|
|
presents = () if use_cache else None |
|
all_attentions = () if output_attentions else None |
|
all_hidden_states = () if output_hidden_states else None |
|
for i, (layer, layer_past) in enumerate(zip(self.layers, past_key_values)): |
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
if self.gradient_checkpointing and self.training: |
|
|
|
def create_custom_forward(module): |
|
def custom_forward(*inputs): |
|
|
|
return module(*inputs, use_cache, None, output_attentions) |
|
|
|
return custom_forward |
|
|
|
outputs = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(layer), |
|
hidden_states, |
|
attention_mask, |
|
position_ids, |
|
head_mask[i], |
|
) |
|
else: |
|
outputs = layer( |
|
hidden_states, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
head_mask=head_mask[i], |
|
layer_past=layer_past, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
) |
|
hidden_states = outputs[0] |
|
if use_cache is True: |
|
presents = presents + (outputs[1],) |
|
if output_attentions: |
|
all_attentions = all_attentions + (outputs[2 if use_cache else 1],) |
|
|
|
|
|
hidden_states = self.final_layer_norm(hidden_states.to(self.final_layer_norm.weight.dtype)) |
|
|
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
if not return_dict: |
|
return tuple(v for v in [hidden_states, presents, all_hidden_states, all_attentions] if v is not None) |
|
|
|
return BaseModelOutputWithPast( |
|
last_hidden_state=hidden_states, |
|
past_key_values=presents, |
|
hidden_states=all_hidden_states, |
|
attentions=all_attentions, |
|
) |
|
|
|
|
|
@add_start_docstrings( |
|
"""GeoV Model with a `language modeling` head on top for CLM fine-tuning.""", GEOV_START_DOCSTRING |
|
) |
|
class GeoVForCausalLM(GeoVPreTrainedModel): |
|
_keys_to_ignore_on_load_missing = [r"causal_mask", r"inv_freq"] |
|
|
|
def __init__(self, config: "GeoVConfig"): |
|
super().__init__(config) |
|
|
|
self.geov = GeoVModel(config) |
|
self.embed_out = nn.Linear(config.hidden_size, config.vocab_size) |
|
|
|
|
|
self.post_init() |
|
|
|
def get_output_embeddings(self): |
|
return self.embed_out |
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
self.embed_out = new_embeddings |
|
|
|
@add_start_docstrings_to_model_forward(GEOV_INPUTS_DOCSTRING) |
|
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, CausalLMOutputWithPast]: |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in |
|
`[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are |
|
ignored (masked), the loss is only computed for the tokens with labels n `[0, ..., config.vocab_size]`. |
|
|
|
Returns: |
|
|
|
Example: |
|
|
|
```python |
|
>>> from transformers import AutoTokenizer, GeoVForCausalLM, GeoVConfig |
|
>>> import torch |
|
|
|
>>> tokenizer = AutoTokenizer.from_pretrained("GeoV/GeoV-9b") |
|
>>> model = GeoVForCausalLM.from_pretrained("GeoV/GeoV-9b") |
|
|
|
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") |
|
>>> outputs = model(**inputs) |
|
|
|
>>> prediction_logits = outputs.logits |
|
```""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
outputs = self.geov( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
past_key_values=past_key_values, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
hidden_states = outputs[0] |
|
lm_logits = self.embed_out(hidden_states) |
|
|
|
lm_loss = None |
|
if labels is not None: |
|
|
|
shift_logits = lm_logits[:, :-1, :].contiguous() |
|
labels = labels[:, 1:].contiguous() |
|
loss_fct = CrossEntropyLoss() |
|
lm_loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), labels.view(-1)) |
|
|
|
if not return_dict: |
|
output = (lm_logits,) + outputs[1:] |
|
return ((lm_loss,) + output) if lm_loss is not None else output |
|
|
|
return CausalLMOutputWithPast( |
|
loss=lm_loss, |
|
logits=lm_logits, |
|
past_key_values=outputs.past_key_values, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, attention_mask=None, **kwargs): |
|
input_shape = input_ids.shape |
|
|
|
|
|
if past_key_values and past_key_values[0] is not None: |
|
input_ids = input_ids[:, -1:] |
|
|
|
position_ids = kwargs.get("position_ids", None) |
|
if attention_mask is not None and position_ids is None: |
|
|
|
position_ids = attention_mask.long().cumsum(-1) - 1 |
|
position_ids.masked_fill_(attention_mask == 0, 1) |
|
if past_key_values: |
|
position_ids = position_ids[:, -1].unsqueeze(-1) |
|
|
|
|
|
if attention_mask is None: |
|
attention_mask = input_ids.new_ones(input_shape) |
|
|
|
return { |
|
"input_ids": input_ids, |
|
"attention_mask": attention_mask, |
|
"position_ids": position_ids, |
|
"past_key_values": past_key_values, |
|
} |
|
|
|
def _reorder_cache(self, past_key_values, beam_idx): |
|
reordered_past = () |
|
for layer_past in past_key_values: |
|
reordered_past += ( |
|
tuple(past_state.index_select(0, beam_idx) for past_state in layer_past[:2]) + layer_past[2:], |
|
) |
|
return reordered_past |
|
|