Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,67 @@
|
|
1 |
---
|
2 |
license: apache-2.0
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
+
datasets:
|
4 |
+
- FreedomIntelligence/phoenix-sft-data-v1
|
5 |
+
language:
|
6 |
+
- en
|
7 |
+
- zh
|
8 |
+
library_name: transformers
|
9 |
---
|
10 |
+
|
11 |
+
## MiniMA-3B
|
12 |
+
|
13 |
+
📑 [arXiv]() | 🤗 [HuggingFace](https://huggingface.co/GeneZC/MiniChat-3B) | 🤖 [ModelScope]()
|
14 |
+
|
15 |
+
❗ Must comply with LICENSE of LLaMA2 since it is derived from LLaMA2.
|
16 |
+
|
17 |
+
A language model distilled and finetuned from an adapted version of LLaMA2-7B following "Towards the Law of Capacity Gap in Distilling Language Models".
|
18 |
+
|
19 |
+
Outperforming a wide range of 3B competitors in GPT4 evaluation and could even competing with several 7B chat models.
|
20 |
+
|
21 |
+
<img src="./teaser_b.jpg" alt="teaser_b" width="700" />
|
22 |
+
|
23 |
+
The following is an example code snippet to use MiniChat-3B:
|
24 |
+
|
25 |
+
```python
|
26 |
+
import torch
|
27 |
+
|
28 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
29 |
+
|
30 |
+
from conversation import get_default_conv_template
|
31 |
+
|
32 |
+
# MiniChat
|
33 |
+
tokenizer = AutoTokenizer.from_pretrained("GeneZC/MiniChat-3B", use_fast=False)
|
34 |
+
# GPU.
|
35 |
+
model = AutoModelForCausalLM.from_pretrained("GeneZC/MiniChat-3B", use_cache=True, device_map="auto", torch_dtype=torch.float16).eval()
|
36 |
+
# CPU.
|
37 |
+
# model = AutoModelForCausalLM.from_pretrained("GeneZC/MiniChat-3B", use_cache=True, device_map="cpu", torch_dtype=torch.float16).eval()
|
38 |
+
|
39 |
+
conv = get_default_conv_template("minichat")
|
40 |
+
|
41 |
+
question = "Implement a program to find the common elements in two arrays without using any extra data structures."
|
42 |
+
conv.append_message(conv.roles[0], question)
|
43 |
+
conv.append_message(conv.roles[1], None)
|
44 |
+
prompt = conv.get_prompt()
|
45 |
+
input_ids = tokenizer([prompt]).input_ids
|
46 |
+
output_ids = model.generate(
|
47 |
+
torch.as_tensor(input_ids).cuda(),
|
48 |
+
do_sample=True,
|
49 |
+
temperature=0.7,
|
50 |
+
max_new_tokens=1024,
|
51 |
+
)
|
52 |
+
output_ids = output_ids[0][len(input_ids[0]):]
|
53 |
+
output = tokenizer.decode(output_ids, skip_special_tokens=True).strip()
|
54 |
+
# output: "def common_elements(arr1, arr2):\n if len(arr1) == 0:\n return []\n if len(arr2) == 0:\n return arr1\n\n common_elements = []\n for element in arr1:\n if element in arr2:\n common_elements.append(element)\n\n return common_elements"
|
55 |
+
# Multiturn conversation could be realized by continuously appending questions to `conv`.
|
56 |
+
```
|
57 |
+
|
58 |
+
## Bibtex
|
59 |
+
|
60 |
+
```bibtex
|
61 |
+
@article{zhang2023law,
|
62 |
+
title={Towards the Law of Capacity Gap in Distilling Language Models},
|
63 |
+
author={Zhang, Chen and Song, Dawei and Ye, Zheyu and Gao, Yan},
|
64 |
+
year={2023},
|
65 |
+
url={}
|
66 |
+
}
|
67 |
+
```
|