Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,103 @@
|
|
1 |
---
|
2 |
license: apache-2.0
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
- zh
|
6 |
+
library_name: transformers
|
7 |
+
widget:
|
8 |
+
- text: "<s> [|User|] Hi 👋 </s>[|Assistant|]"
|
9 |
---
|
10 |
+
|
11 |
+
## MiniChat-1.5-3B
|
12 |
+
|
13 |
+
📑 [arXiv](https://arxiv.org/abs/2311.07052) | 👻 [GitHub](https://github.com/GeneZC/MiniMA) | 🤗 [HuggingFace-MiniMA](https://huggingface.co/GeneZC/MiniMA-3B) | 🤗 [HuggingFace-MiniChat](https://huggingface.co/GeneZC/MiniChat-3B) | 🤖 [ModelScope-MiniMA](https://modelscope.cn/models/GeneZC/MiniMA-3B) | 🤖 [ModelScope-MiniChat](https://modelscope.cn/models/GeneZC/MiniChat-3B) | 🤗 [HuggingFace-MiniChat-1.5](https://huggingface.co/GeneZC/MiniChat-1.5-3B) | 🤗 [HuggingFace-MiniMA-2](https://huggingface.co/GeneZC/MiniMA-2-3B) | 🤗 [HuggingFace-MiniChat-2](https://huggingface.co/GeneZC/MiniChat-2-3B)
|
14 |
+
|
15 |
+
🆕 **Updates from MiniChat-3B**:
|
16 |
+
- better base model MiniMA-2-3B;
|
17 |
+
- better data mixture;
|
18 |
+
- use of [NEFTune](https://arxiv.org/abs/2310.05914);
|
19 |
+
- use of [DPO](https://arxiv.org/abs/2305.18290).
|
20 |
+
|
21 |
+
❗ Must comply with LICENSE of LLaMA2 since it is derived from LLaMA2.
|
22 |
+
|
23 |
+
A language model continued from MiniMA-3B and finetuned on both instruction and preference data.
|
24 |
+
|
25 |
+
Surpassing Vicuna-7B and approximating LLaMA-2-Chat-7B on MT-Bench.
|
26 |
+
|
27 |
+
<img src="./teaser_b.jpg" alt="teaser_b" width="687" />
|
28 |
+
|
29 |
+
**Standard Benchmarks**
|
30 |
+
|
31 |
+
|Method|TFLOPs|MMLU (5-shot)|CEval (5-shot)|DROP (3-shot)|HumanEval (0-shot)|BBH (3-shot)|GSM8K (8-shot)|
|
32 |
+
|--|--|--|--|--|--|--|--|
|
33 |
+
|Mamba-2.8B|4.6E9|25.58|24.74|15.72|7.32|29.37|3.49|
|
34 |
+
|ShearedLLaMA-2.7B|0.8E9|26.97|22.88|19.98|4.88|30.48|3.56|
|
35 |
+
|BTLM-3B|11.3E9|27.20|26.00|17.84|10.98|30.87|4.55|
|
36 |
+
|StableLM-3B|72.0E9|44.75|31.05|22.35|15.85|32.59|10.99|
|
37 |
+
|Qwen-1.8B|23.8E9|44.05|54.75|12.97|14.02|30.80|22.97|
|
38 |
+
|Phi-2-2.8B|159.9E9|56.74|34.03|30.74|46.95|44.13|55.42|
|
39 |
+
|LLaMA-2-7B|84.0E9|46.00|34.40|31.57|12.80|32.02|14.10|
|
40 |
+
||
|
41 |
+
|MiniMA-3B|4.0E9|28.51|28.23|22.50|10.98|31.61|8.11|
|
42 |
+
|MiniChat-3B|4.0E9|38.40|36.48|22.58|18.29|31.36|29.72|
|
43 |
+
|MiniMA-2-3B|13.4E9|40.14|44.65|23.10|14.63|31.43|8.87|
|
44 |
+
|MiniChat-2-3B|13.4E9|46.17|43.91|30.26|22.56|34.95|38.13|
|
45 |
+
|
46 |
+
**Instruction-following Benchmarks**
|
47 |
+
|
48 |
+
|Method|AlpacaEval|MT-Bench|
|
49 |
+
|--|--|--|
|
50 |
+
|GPT-4|95.28|9.18|
|
51 |
+
|Zephyr-7B-Beta|90.60|7.34|
|
52 |
+
|Phi-2-DPO|81.37|-|
|
53 |
+
|Vicuna-7B|76.84|6.17|
|
54 |
+
|LLaMA-2-Chat-7B|71.37|6.27|
|
55 |
+
||
|
56 |
+
|MiniChat-3B|48.82|-|
|
57 |
+
|MiniChat-2-3B|77.30|6.23|
|
58 |
+
|
59 |
+
The following is an example code snippet to use MiniChat-2-3B:
|
60 |
+
|
61 |
+
```python
|
62 |
+
import torch
|
63 |
+
|
64 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
65 |
+
|
66 |
+
from conversation import get_default_conv_template
|
67 |
+
|
68 |
+
# MiniChat
|
69 |
+
tokenizer = AutoTokenizer.from_pretrained("GeneZC/MiniChat-2-3B", use_fast=False)
|
70 |
+
# GPU.
|
71 |
+
model = AutoModelForCausalLM.from_pretrained("GeneZC/MiniChat-2-3B", use_cache=True, device_map="auto", torch_dtype=torch.float16).eval()
|
72 |
+
# CPU.
|
73 |
+
# model = AutoModelForCausalLM.from_pretrained("GeneZC/MiniChat-2-3B", use_cache=True, device_map="cpu", torch_dtype=torch.float16).eval()
|
74 |
+
|
75 |
+
conv = get_default_conv_template("minichat")
|
76 |
+
|
77 |
+
question = "Implement a program to find the common elements in two arrays without using any extra data structures."
|
78 |
+
conv.append_message(conv.roles[0], question)
|
79 |
+
conv.append_message(conv.roles[1], None)
|
80 |
+
prompt = conv.get_prompt()
|
81 |
+
input_ids = tokenizer([prompt]).input_ids
|
82 |
+
output_ids = model.generate(
|
83 |
+
torch.as_tensor(input_ids).cuda(),
|
84 |
+
do_sample=True,
|
85 |
+
temperature=0.7,
|
86 |
+
max_new_tokens=1024,
|
87 |
+
)
|
88 |
+
output_ids = output_ids[0][len(input_ids[0]):]
|
89 |
+
output = tokenizer.decode(output_ids, skip_special_tokens=True).strip()
|
90 |
+
# output: "def common_elements(arr1, arr2):\n if len(arr1) == 0:\n return []\n if len(arr2) == 0:\n return arr1\n\n common_elements = []\n for element in arr1:\n if element in arr2:\n common_elements.append(element)\n\n return common_elements"
|
91 |
+
# Multiturn conversation could be realized by continuously appending questions to `conv`.
|
92 |
+
```
|
93 |
+
|
94 |
+
## Bibtex
|
95 |
+
|
96 |
+
```bibtex
|
97 |
+
@article{zhang2023law,
|
98 |
+
title={Towards the Law of Capacity Gap in Distilling Language Models},
|
99 |
+
author={Zhang, Chen and Song, Dawei and Ye, Zheyu and Gao, Yan},
|
100 |
+
year={2023},
|
101 |
+
url={https://arxiv.org/abs/2311.07052}
|
102 |
+
}
|
103 |
+
```
|