|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- common_voice |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: wav2vec2-large-xls-r-may23-luganda-colab |
|
results: |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: common_voice |
|
type: common_voice |
|
config: lg |
|
split: test |
|
args: lg |
|
metrics: |
|
- name: Wer |
|
type: wer |
|
value: 0.502121009153829 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# wav2vec2-large-xls-r-may23-luganda-colab |
|
|
|
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.7210 |
|
- Wer: 0.5021 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0003 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 32 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- num_epochs: 100 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:| |
|
| 0.0539 | 7.77 | 400 | 0.6641 | 0.5738 | |
|
| 0.0725 | 15.53 | 800 | 0.6735 | 0.5932 | |
|
| 0.058 | 23.3 | 1200 | 0.6754 | 0.5751 | |
|
| 0.0517 | 31.07 | 1600 | 0.6591 | 0.5901 | |
|
| 0.0437 | 38.83 | 2000 | 0.7140 | 0.5658 | |
|
| 0.0366 | 46.6 | 2400 | 0.7154 | 0.5602 | |
|
| 0.0295 | 54.37 | 2800 | 0.6942 | 0.5140 | |
|
| 0.0251 | 62.14 | 3200 | 0.7095 | 0.5204 | |
|
| 0.0191 | 69.9 | 3600 | 0.7459 | 0.5267 | |
|
| 0.0157 | 77.67 | 4000 | 0.6825 | 0.5155 | |
|
| 0.0126 | 85.44 | 4400 | 0.7197 | 0.5135 | |
|
| 0.0098 | 93.2 | 4800 | 0.7210 | 0.5021 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.29.2 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 1.18.3 |
|
- Tokenizers 0.13.3 |
|
|