Upload folder using huggingface_hub
Browse files- .gitattributes +1 -0
- README.md +67 -0
- added_tokens.json +24 -0
- all_results.json +8 -0
- config.json +30 -0
- generation_config.json +6 -0
- merges.txt +0 -0
- model-00001-of-00002.safetensors +3 -0
- model-00002-of-00002.safetensors +3 -0
- model.safetensors.index.json +441 -0
- special_tokens_map.json +31 -0
- tokenizer.json +3 -0
- tokenizer_config.json +209 -0
- train_results.json +8 -0
- trainer_state.json +1092 -0
- training_args.bin +3 -0
- vocab.json +0 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
|
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
base_model: Qwen/Qwen2.5-3B
|
| 3 |
+
datasets: xiaodongguaAIGC/X-R1-TAL-SCQ5K
|
| 4 |
+
library_name: transformers
|
| 5 |
+
tags:
|
| 6 |
+
- generated_from_trainer
|
| 7 |
+
- X-R1
|
| 8 |
+
licence: license
|
| 9 |
+
---
|
| 10 |
+
|
| 11 |
+
# Model Card for None
|
| 12 |
+
|
| 13 |
+
This model is a fine-tuned version of [Qwen/Qwen2.5-3B](https://huggingface.co/Qwen/Qwen2.5-3B) on the [xiaodongguaAIGC/X-R1-TAL-SCQ5K](https://huggingface.co/datasets/xiaodongguaAIGC/X-R1-TAL-SCQ5K) dataset.
|
| 14 |
+
It has been trained using [TRL](https://github.com/huggingface/trl).
|
| 15 |
+
|
| 16 |
+
## Quick start
|
| 17 |
+
|
| 18 |
+
```python
|
| 19 |
+
from transformers import pipeline
|
| 20 |
+
|
| 21 |
+
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
|
| 22 |
+
generator = pipeline("text-generation", model="None", device="cuda")
|
| 23 |
+
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
|
| 24 |
+
print(output["generated_text"])
|
| 25 |
+
```
|
| 26 |
+
|
| 27 |
+
## Training procedure
|
| 28 |
+
|
| 29 |
+
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/ccseu1991-southeast-university/ma-rlhf/runs/ry4wf65o)
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
|
| 33 |
+
|
| 34 |
+
### Framework versions
|
| 35 |
+
|
| 36 |
+
- TRL: 0.16.0.dev0
|
| 37 |
+
- Transformers: 4.48.2
|
| 38 |
+
- Pytorch: 2.5.1
|
| 39 |
+
- Datasets: 3.2.0
|
| 40 |
+
- Tokenizers: 0.21.4
|
| 41 |
+
|
| 42 |
+
## Citations
|
| 43 |
+
|
| 44 |
+
Cite GRPO as:
|
| 45 |
+
|
| 46 |
+
```bibtex
|
| 47 |
+
@article{zhihong2024deepseekmath,
|
| 48 |
+
title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
|
| 49 |
+
author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
|
| 50 |
+
year = 2024,
|
| 51 |
+
eprint = {arXiv:2402.03300},
|
| 52 |
+
}
|
| 53 |
+
|
| 54 |
+
```
|
| 55 |
+
|
| 56 |
+
Cite TRL as:
|
| 57 |
+
|
| 58 |
+
```bibtex
|
| 59 |
+
@misc{vonwerra2022trl,
|
| 60 |
+
title = {{TRL: Transformer Reinforcement Learning}},
|
| 61 |
+
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
|
| 62 |
+
year = 2020,
|
| 63 |
+
journal = {GitHub repository},
|
| 64 |
+
publisher = {GitHub},
|
| 65 |
+
howpublished = {\url{https://github.com/huggingface/trl}}
|
| 66 |
+
}
|
| 67 |
+
```
|
added_tokens.json
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"</tool_call>": 151658,
|
| 3 |
+
"<tool_call>": 151657,
|
| 4 |
+
"<|box_end|>": 151649,
|
| 5 |
+
"<|box_start|>": 151648,
|
| 6 |
+
"<|endoftext|>": 151643,
|
| 7 |
+
"<|file_sep|>": 151664,
|
| 8 |
+
"<|fim_middle|>": 151660,
|
| 9 |
+
"<|fim_pad|>": 151662,
|
| 10 |
+
"<|fim_prefix|>": 151659,
|
| 11 |
+
"<|fim_suffix|>": 151661,
|
| 12 |
+
"<|im_end|>": 151645,
|
| 13 |
+
"<|im_start|>": 151644,
|
| 14 |
+
"<|image_pad|>": 151655,
|
| 15 |
+
"<|object_ref_end|>": 151647,
|
| 16 |
+
"<|object_ref_start|>": 151646,
|
| 17 |
+
"<|quad_end|>": 151651,
|
| 18 |
+
"<|quad_start|>": 151650,
|
| 19 |
+
"<|repo_name|>": 151663,
|
| 20 |
+
"<|video_pad|>": 151656,
|
| 21 |
+
"<|vision_end|>": 151653,
|
| 22 |
+
"<|vision_pad|>": 151654,
|
| 23 |
+
"<|vision_start|>": 151652
|
| 24 |
+
}
|
all_results.json
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"total_flos": 0.0,
|
| 3 |
+
"train_loss": 0.1488674604743719,
|
| 4 |
+
"train_runtime": 66920.1081,
|
| 5 |
+
"train_samples": 6000,
|
| 6 |
+
"train_samples_per_second": 0.09,
|
| 7 |
+
"train_steps_per_second": 0.011
|
| 8 |
+
}
|
config.json
ADDED
|
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "Qwen/Qwen2.5-3B",
|
| 3 |
+
"architectures": [
|
| 4 |
+
"Qwen2ForCausalLM"
|
| 5 |
+
],
|
| 6 |
+
"attention_dropout": 0.0,
|
| 7 |
+
"bos_token_id": 151643,
|
| 8 |
+
"eos_token_id": 151643,
|
| 9 |
+
"hidden_act": "silu",
|
| 10 |
+
"hidden_size": 2048,
|
| 11 |
+
"initializer_range": 0.02,
|
| 12 |
+
"intermediate_size": 11008,
|
| 13 |
+
"max_position_embeddings": 32768,
|
| 14 |
+
"max_window_layers": 36,
|
| 15 |
+
"model_type": "qwen2",
|
| 16 |
+
"num_attention_heads": 16,
|
| 17 |
+
"num_hidden_layers": 36,
|
| 18 |
+
"num_key_value_heads": 2,
|
| 19 |
+
"rms_norm_eps": 1e-06,
|
| 20 |
+
"rope_scaling": null,
|
| 21 |
+
"rope_theta": 1000000.0,
|
| 22 |
+
"sliding_window": null,
|
| 23 |
+
"tie_word_embeddings": true,
|
| 24 |
+
"torch_dtype": "bfloat16",
|
| 25 |
+
"transformers_version": "4.48.2",
|
| 26 |
+
"use_cache": true,
|
| 27 |
+
"use_mrope": false,
|
| 28 |
+
"use_sliding_window": false,
|
| 29 |
+
"vocab_size": 151936
|
| 30 |
+
}
|
generation_config.json
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token_id": 151643,
|
| 3 |
+
"eos_token_id": 151643,
|
| 4 |
+
"max_new_tokens": 2048,
|
| 5 |
+
"transformers_version": "4.48.2"
|
| 6 |
+
}
|
merges.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
model-00001-of-00002.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:89d6a29feda37586a5c4b5f90eb115b57ab03b127c85fcb0e14d8e2dcbe257bd
|
| 3 |
+
size 4957560304
|
model-00002-of-00002.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:193f0a737265d1c651549942c373bb0cfbc630c56fcd35be42b382ce2ead4c83
|
| 3 |
+
size 1214366696
|
model.safetensors.index.json
ADDED
|
@@ -0,0 +1,441 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"metadata": {
|
| 3 |
+
"total_size": 6171877376
|
| 4 |
+
},
|
| 5 |
+
"weight_map": {
|
| 6 |
+
"model.embed_tokens.weight": "model-00001-of-00002.safetensors",
|
| 7 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 8 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 9 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 10 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 11 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 12 |
+
"model.layers.0.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 13 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 14 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 15 |
+
"model.layers.0.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 16 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 17 |
+
"model.layers.0.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 18 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 19 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 20 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 21 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 22 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 23 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 24 |
+
"model.layers.1.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 25 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 26 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 27 |
+
"model.layers.1.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 28 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 29 |
+
"model.layers.1.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 30 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 31 |
+
"model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 32 |
+
"model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 33 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 34 |
+
"model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 35 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 36 |
+
"model.layers.10.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 37 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 38 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 39 |
+
"model.layers.10.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 40 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 41 |
+
"model.layers.10.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 42 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 43 |
+
"model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 44 |
+
"model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 45 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 46 |
+
"model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 47 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 48 |
+
"model.layers.11.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 49 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 50 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 51 |
+
"model.layers.11.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 52 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 53 |
+
"model.layers.11.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 54 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 55 |
+
"model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 56 |
+
"model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 57 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 58 |
+
"model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 59 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 60 |
+
"model.layers.12.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 61 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 62 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 63 |
+
"model.layers.12.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 64 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 65 |
+
"model.layers.12.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 66 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 67 |
+
"model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 68 |
+
"model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 69 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 70 |
+
"model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 71 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 72 |
+
"model.layers.13.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 73 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 74 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 75 |
+
"model.layers.13.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 76 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 77 |
+
"model.layers.13.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 78 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 79 |
+
"model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 80 |
+
"model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 81 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 82 |
+
"model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 83 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 84 |
+
"model.layers.14.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 85 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 86 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 87 |
+
"model.layers.14.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 88 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 89 |
+
"model.layers.14.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 90 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 91 |
+
"model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 92 |
+
"model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 93 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 94 |
+
"model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 95 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 96 |
+
"model.layers.15.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 97 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 98 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 99 |
+
"model.layers.15.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 100 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 101 |
+
"model.layers.15.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 102 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 103 |
+
"model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 104 |
+
"model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 105 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 106 |
+
"model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 107 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 108 |
+
"model.layers.16.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 109 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 110 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 111 |
+
"model.layers.16.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 112 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 113 |
+
"model.layers.16.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 114 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 115 |
+
"model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 116 |
+
"model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 117 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 118 |
+
"model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 119 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 120 |
+
"model.layers.17.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 121 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 122 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 123 |
+
"model.layers.17.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 124 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 125 |
+
"model.layers.17.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 126 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 127 |
+
"model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 128 |
+
"model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 129 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 130 |
+
"model.layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 131 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 132 |
+
"model.layers.18.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 133 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 134 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 135 |
+
"model.layers.18.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 136 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 137 |
+
"model.layers.18.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 138 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 139 |
+
"model.layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 140 |
+
"model.layers.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 141 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 142 |
+
"model.layers.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 143 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 144 |
+
"model.layers.19.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 145 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 146 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 147 |
+
"model.layers.19.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 148 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 149 |
+
"model.layers.19.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 150 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 151 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 152 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 153 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 154 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 155 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 156 |
+
"model.layers.2.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 157 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 158 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 159 |
+
"model.layers.2.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 160 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 161 |
+
"model.layers.2.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 162 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 163 |
+
"model.layers.20.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 164 |
+
"model.layers.20.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 165 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 166 |
+
"model.layers.20.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 167 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 168 |
+
"model.layers.20.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 169 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 170 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 171 |
+
"model.layers.20.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 172 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 173 |
+
"model.layers.20.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 174 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 175 |
+
"model.layers.21.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 176 |
+
"model.layers.21.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 177 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 178 |
+
"model.layers.21.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 179 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 180 |
+
"model.layers.21.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 181 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 182 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 183 |
+
"model.layers.21.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 184 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 185 |
+
"model.layers.21.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 186 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 187 |
+
"model.layers.22.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 188 |
+
"model.layers.22.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 189 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 190 |
+
"model.layers.22.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 191 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 192 |
+
"model.layers.22.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 193 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 194 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 195 |
+
"model.layers.22.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 196 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 197 |
+
"model.layers.22.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 198 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 199 |
+
"model.layers.23.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 200 |
+
"model.layers.23.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 201 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 202 |
+
"model.layers.23.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 203 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 204 |
+
"model.layers.23.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 205 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 206 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 207 |
+
"model.layers.23.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 208 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 209 |
+
"model.layers.23.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 210 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 211 |
+
"model.layers.24.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 212 |
+
"model.layers.24.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 213 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 214 |
+
"model.layers.24.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 215 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 216 |
+
"model.layers.24.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 217 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 218 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 219 |
+
"model.layers.24.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 220 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 221 |
+
"model.layers.24.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 222 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 223 |
+
"model.layers.25.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 224 |
+
"model.layers.25.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 225 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 226 |
+
"model.layers.25.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 227 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 228 |
+
"model.layers.25.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 229 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 230 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 231 |
+
"model.layers.25.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 232 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 233 |
+
"model.layers.25.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 234 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 235 |
+
"model.layers.26.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 236 |
+
"model.layers.26.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 237 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 238 |
+
"model.layers.26.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 239 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 240 |
+
"model.layers.26.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 241 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 242 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 243 |
+
"model.layers.26.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 244 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 245 |
+
"model.layers.26.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 246 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 247 |
+
"model.layers.27.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 248 |
+
"model.layers.27.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 249 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 250 |
+
"model.layers.27.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 251 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 252 |
+
"model.layers.27.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 253 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 254 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 255 |
+
"model.layers.27.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 256 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 257 |
+
"model.layers.27.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 258 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 259 |
+
"model.layers.28.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 260 |
+
"model.layers.28.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 261 |
+
"model.layers.28.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 262 |
+
"model.layers.28.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 263 |
+
"model.layers.28.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 264 |
+
"model.layers.28.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 265 |
+
"model.layers.28.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 266 |
+
"model.layers.28.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 267 |
+
"model.layers.28.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 268 |
+
"model.layers.28.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 269 |
+
"model.layers.28.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 270 |
+
"model.layers.28.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 271 |
+
"model.layers.29.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 272 |
+
"model.layers.29.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 273 |
+
"model.layers.29.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 274 |
+
"model.layers.29.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 275 |
+
"model.layers.29.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 276 |
+
"model.layers.29.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
| 277 |
+
"model.layers.29.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 278 |
+
"model.layers.29.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 279 |
+
"model.layers.29.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
| 280 |
+
"model.layers.29.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 281 |
+
"model.layers.29.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
| 282 |
+
"model.layers.29.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 283 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 284 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 285 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 286 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 287 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 288 |
+
"model.layers.3.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 289 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 290 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 291 |
+
"model.layers.3.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 292 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 293 |
+
"model.layers.3.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 294 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 295 |
+
"model.layers.30.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 296 |
+
"model.layers.30.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 297 |
+
"model.layers.30.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 298 |
+
"model.layers.30.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 299 |
+
"model.layers.30.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 300 |
+
"model.layers.30.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
| 301 |
+
"model.layers.30.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 302 |
+
"model.layers.30.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 303 |
+
"model.layers.30.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
| 304 |
+
"model.layers.30.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 305 |
+
"model.layers.30.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
| 306 |
+
"model.layers.30.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 307 |
+
"model.layers.31.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 308 |
+
"model.layers.31.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 309 |
+
"model.layers.31.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 310 |
+
"model.layers.31.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 311 |
+
"model.layers.31.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 312 |
+
"model.layers.31.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
| 313 |
+
"model.layers.31.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 314 |
+
"model.layers.31.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 315 |
+
"model.layers.31.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
| 316 |
+
"model.layers.31.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 317 |
+
"model.layers.31.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
| 318 |
+
"model.layers.31.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 319 |
+
"model.layers.32.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 320 |
+
"model.layers.32.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 321 |
+
"model.layers.32.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 322 |
+
"model.layers.32.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 323 |
+
"model.layers.32.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 324 |
+
"model.layers.32.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
| 325 |
+
"model.layers.32.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 326 |
+
"model.layers.32.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 327 |
+
"model.layers.32.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
| 328 |
+
"model.layers.32.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 329 |
+
"model.layers.32.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
| 330 |
+
"model.layers.32.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 331 |
+
"model.layers.33.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 332 |
+
"model.layers.33.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 333 |
+
"model.layers.33.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 334 |
+
"model.layers.33.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 335 |
+
"model.layers.33.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 336 |
+
"model.layers.33.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
| 337 |
+
"model.layers.33.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 338 |
+
"model.layers.33.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 339 |
+
"model.layers.33.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
| 340 |
+
"model.layers.33.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 341 |
+
"model.layers.33.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
| 342 |
+
"model.layers.33.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 343 |
+
"model.layers.34.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 344 |
+
"model.layers.34.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 345 |
+
"model.layers.34.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 346 |
+
"model.layers.34.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 347 |
+
"model.layers.34.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 348 |
+
"model.layers.34.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
| 349 |
+
"model.layers.34.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 350 |
+
"model.layers.34.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 351 |
+
"model.layers.34.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
| 352 |
+
"model.layers.34.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 353 |
+
"model.layers.34.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
| 354 |
+
"model.layers.34.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 355 |
+
"model.layers.35.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 356 |
+
"model.layers.35.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 357 |
+
"model.layers.35.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 358 |
+
"model.layers.35.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 359 |
+
"model.layers.35.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 360 |
+
"model.layers.35.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
|
| 361 |
+
"model.layers.35.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 362 |
+
"model.layers.35.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 363 |
+
"model.layers.35.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
|
| 364 |
+
"model.layers.35.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 365 |
+
"model.layers.35.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
|
| 366 |
+
"model.layers.35.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 367 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 368 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 369 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 370 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 371 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 372 |
+
"model.layers.4.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 373 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 374 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 375 |
+
"model.layers.4.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 376 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 377 |
+
"model.layers.4.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 378 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 379 |
+
"model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 380 |
+
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 381 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 382 |
+
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 383 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 384 |
+
"model.layers.5.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 385 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 386 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 387 |
+
"model.layers.5.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 388 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 389 |
+
"model.layers.5.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 390 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 391 |
+
"model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 392 |
+
"model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 393 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 394 |
+
"model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 395 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 396 |
+
"model.layers.6.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 397 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 398 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 399 |
+
"model.layers.6.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 400 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 401 |
+
"model.layers.6.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 402 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 403 |
+
"model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 404 |
+
"model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 405 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 406 |
+
"model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 407 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 408 |
+
"model.layers.7.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 409 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 410 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 411 |
+
"model.layers.7.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 412 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 413 |
+
"model.layers.7.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 414 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 415 |
+
"model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 416 |
+
"model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 417 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 418 |
+
"model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 419 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 420 |
+
"model.layers.8.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 421 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 422 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 423 |
+
"model.layers.8.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 424 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 425 |
+
"model.layers.8.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 426 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 427 |
+
"model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 428 |
+
"model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 429 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 430 |
+
"model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 431 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 432 |
+
"model.layers.9.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 433 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 434 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 435 |
+
"model.layers.9.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 436 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 437 |
+
"model.layers.9.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 438 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 439 |
+
"model.norm.weight": "model-00002-of-00002.safetensors"
|
| 440 |
+
}
|
| 441 |
+
}
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"additional_special_tokens": [
|
| 3 |
+
"<|im_start|>",
|
| 4 |
+
"<|im_end|>",
|
| 5 |
+
"<|object_ref_start|>",
|
| 6 |
+
"<|object_ref_end|>",
|
| 7 |
+
"<|box_start|>",
|
| 8 |
+
"<|box_end|>",
|
| 9 |
+
"<|quad_start|>",
|
| 10 |
+
"<|quad_end|>",
|
| 11 |
+
"<|vision_start|>",
|
| 12 |
+
"<|vision_end|>",
|
| 13 |
+
"<|vision_pad|>",
|
| 14 |
+
"<|image_pad|>",
|
| 15 |
+
"<|video_pad|>"
|
| 16 |
+
],
|
| 17 |
+
"eos_token": {
|
| 18 |
+
"content": "<|endoftext|>",
|
| 19 |
+
"lstrip": false,
|
| 20 |
+
"normalized": false,
|
| 21 |
+
"rstrip": false,
|
| 22 |
+
"single_word": false
|
| 23 |
+
},
|
| 24 |
+
"pad_token": {
|
| 25 |
+
"content": "<|endoftext|>",
|
| 26 |
+
"lstrip": false,
|
| 27 |
+
"normalized": false,
|
| 28 |
+
"rstrip": false,
|
| 29 |
+
"single_word": false
|
| 30 |
+
}
|
| 31 |
+
}
|
tokenizer.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:5eee858c5123a4279c3e1f7b81247343f356ac767940b2692a928ad929543214
|
| 3 |
+
size 11422063
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,209 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_bos_token": false,
|
| 3 |
+
"add_prefix_space": false,
|
| 4 |
+
"added_tokens_decoder": {
|
| 5 |
+
"151643": {
|
| 6 |
+
"content": "<|endoftext|>",
|
| 7 |
+
"lstrip": false,
|
| 8 |
+
"normalized": false,
|
| 9 |
+
"rstrip": false,
|
| 10 |
+
"single_word": false,
|
| 11 |
+
"special": true
|
| 12 |
+
},
|
| 13 |
+
"151644": {
|
| 14 |
+
"content": "<|im_start|>",
|
| 15 |
+
"lstrip": false,
|
| 16 |
+
"normalized": false,
|
| 17 |
+
"rstrip": false,
|
| 18 |
+
"single_word": false,
|
| 19 |
+
"special": true
|
| 20 |
+
},
|
| 21 |
+
"151645": {
|
| 22 |
+
"content": "<|im_end|>",
|
| 23 |
+
"lstrip": false,
|
| 24 |
+
"normalized": false,
|
| 25 |
+
"rstrip": false,
|
| 26 |
+
"single_word": false,
|
| 27 |
+
"special": true
|
| 28 |
+
},
|
| 29 |
+
"151646": {
|
| 30 |
+
"content": "<|object_ref_start|>",
|
| 31 |
+
"lstrip": false,
|
| 32 |
+
"normalized": false,
|
| 33 |
+
"rstrip": false,
|
| 34 |
+
"single_word": false,
|
| 35 |
+
"special": true
|
| 36 |
+
},
|
| 37 |
+
"151647": {
|
| 38 |
+
"content": "<|object_ref_end|>",
|
| 39 |
+
"lstrip": false,
|
| 40 |
+
"normalized": false,
|
| 41 |
+
"rstrip": false,
|
| 42 |
+
"single_word": false,
|
| 43 |
+
"special": true
|
| 44 |
+
},
|
| 45 |
+
"151648": {
|
| 46 |
+
"content": "<|box_start|>",
|
| 47 |
+
"lstrip": false,
|
| 48 |
+
"normalized": false,
|
| 49 |
+
"rstrip": false,
|
| 50 |
+
"single_word": false,
|
| 51 |
+
"special": true
|
| 52 |
+
},
|
| 53 |
+
"151649": {
|
| 54 |
+
"content": "<|box_end|>",
|
| 55 |
+
"lstrip": false,
|
| 56 |
+
"normalized": false,
|
| 57 |
+
"rstrip": false,
|
| 58 |
+
"single_word": false,
|
| 59 |
+
"special": true
|
| 60 |
+
},
|
| 61 |
+
"151650": {
|
| 62 |
+
"content": "<|quad_start|>",
|
| 63 |
+
"lstrip": false,
|
| 64 |
+
"normalized": false,
|
| 65 |
+
"rstrip": false,
|
| 66 |
+
"single_word": false,
|
| 67 |
+
"special": true
|
| 68 |
+
},
|
| 69 |
+
"151651": {
|
| 70 |
+
"content": "<|quad_end|>",
|
| 71 |
+
"lstrip": false,
|
| 72 |
+
"normalized": false,
|
| 73 |
+
"rstrip": false,
|
| 74 |
+
"single_word": false,
|
| 75 |
+
"special": true
|
| 76 |
+
},
|
| 77 |
+
"151652": {
|
| 78 |
+
"content": "<|vision_start|>",
|
| 79 |
+
"lstrip": false,
|
| 80 |
+
"normalized": false,
|
| 81 |
+
"rstrip": false,
|
| 82 |
+
"single_word": false,
|
| 83 |
+
"special": true
|
| 84 |
+
},
|
| 85 |
+
"151653": {
|
| 86 |
+
"content": "<|vision_end|>",
|
| 87 |
+
"lstrip": false,
|
| 88 |
+
"normalized": false,
|
| 89 |
+
"rstrip": false,
|
| 90 |
+
"single_word": false,
|
| 91 |
+
"special": true
|
| 92 |
+
},
|
| 93 |
+
"151654": {
|
| 94 |
+
"content": "<|vision_pad|>",
|
| 95 |
+
"lstrip": false,
|
| 96 |
+
"normalized": false,
|
| 97 |
+
"rstrip": false,
|
| 98 |
+
"single_word": false,
|
| 99 |
+
"special": true
|
| 100 |
+
},
|
| 101 |
+
"151655": {
|
| 102 |
+
"content": "<|image_pad|>",
|
| 103 |
+
"lstrip": false,
|
| 104 |
+
"normalized": false,
|
| 105 |
+
"rstrip": false,
|
| 106 |
+
"single_word": false,
|
| 107 |
+
"special": true
|
| 108 |
+
},
|
| 109 |
+
"151656": {
|
| 110 |
+
"content": "<|video_pad|>",
|
| 111 |
+
"lstrip": false,
|
| 112 |
+
"normalized": false,
|
| 113 |
+
"rstrip": false,
|
| 114 |
+
"single_word": false,
|
| 115 |
+
"special": true
|
| 116 |
+
},
|
| 117 |
+
"151657": {
|
| 118 |
+
"content": "<tool_call>",
|
| 119 |
+
"lstrip": false,
|
| 120 |
+
"normalized": false,
|
| 121 |
+
"rstrip": false,
|
| 122 |
+
"single_word": false,
|
| 123 |
+
"special": false
|
| 124 |
+
},
|
| 125 |
+
"151658": {
|
| 126 |
+
"content": "</tool_call>",
|
| 127 |
+
"lstrip": false,
|
| 128 |
+
"normalized": false,
|
| 129 |
+
"rstrip": false,
|
| 130 |
+
"single_word": false,
|
| 131 |
+
"special": false
|
| 132 |
+
},
|
| 133 |
+
"151659": {
|
| 134 |
+
"content": "<|fim_prefix|>",
|
| 135 |
+
"lstrip": false,
|
| 136 |
+
"normalized": false,
|
| 137 |
+
"rstrip": false,
|
| 138 |
+
"single_word": false,
|
| 139 |
+
"special": false
|
| 140 |
+
},
|
| 141 |
+
"151660": {
|
| 142 |
+
"content": "<|fim_middle|>",
|
| 143 |
+
"lstrip": false,
|
| 144 |
+
"normalized": false,
|
| 145 |
+
"rstrip": false,
|
| 146 |
+
"single_word": false,
|
| 147 |
+
"special": false
|
| 148 |
+
},
|
| 149 |
+
"151661": {
|
| 150 |
+
"content": "<|fim_suffix|>",
|
| 151 |
+
"lstrip": false,
|
| 152 |
+
"normalized": false,
|
| 153 |
+
"rstrip": false,
|
| 154 |
+
"single_word": false,
|
| 155 |
+
"special": false
|
| 156 |
+
},
|
| 157 |
+
"151662": {
|
| 158 |
+
"content": "<|fim_pad|>",
|
| 159 |
+
"lstrip": false,
|
| 160 |
+
"normalized": false,
|
| 161 |
+
"rstrip": false,
|
| 162 |
+
"single_word": false,
|
| 163 |
+
"special": false
|
| 164 |
+
},
|
| 165 |
+
"151663": {
|
| 166 |
+
"content": "<|repo_name|>",
|
| 167 |
+
"lstrip": false,
|
| 168 |
+
"normalized": false,
|
| 169 |
+
"rstrip": false,
|
| 170 |
+
"single_word": false,
|
| 171 |
+
"special": false
|
| 172 |
+
},
|
| 173 |
+
"151664": {
|
| 174 |
+
"content": "<|file_sep|>",
|
| 175 |
+
"lstrip": false,
|
| 176 |
+
"normalized": false,
|
| 177 |
+
"rstrip": false,
|
| 178 |
+
"single_word": false,
|
| 179 |
+
"special": false
|
| 180 |
+
}
|
| 181 |
+
},
|
| 182 |
+
"additional_special_tokens": [
|
| 183 |
+
"<|im_start|>",
|
| 184 |
+
"<|im_end|>",
|
| 185 |
+
"<|object_ref_start|>",
|
| 186 |
+
"<|object_ref_end|>",
|
| 187 |
+
"<|box_start|>",
|
| 188 |
+
"<|box_end|>",
|
| 189 |
+
"<|quad_start|>",
|
| 190 |
+
"<|quad_end|>",
|
| 191 |
+
"<|vision_start|>",
|
| 192 |
+
"<|vision_end|>",
|
| 193 |
+
"<|vision_pad|>",
|
| 194 |
+
"<|image_pad|>",
|
| 195 |
+
"<|video_pad|>"
|
| 196 |
+
],
|
| 197 |
+
"bos_token": null,
|
| 198 |
+
"chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
|
| 199 |
+
"clean_up_tokenization_spaces": false,
|
| 200 |
+
"eos_token": "<|endoftext|>",
|
| 201 |
+
"errors": "replace",
|
| 202 |
+
"extra_special_tokens": {},
|
| 203 |
+
"model_max_length": 131072,
|
| 204 |
+
"pad_token": "<|endoftext|>",
|
| 205 |
+
"padding_side": "left",
|
| 206 |
+
"split_special_tokens": false,
|
| 207 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
| 208 |
+
"unk_token": null
|
| 209 |
+
}
|
train_results.json
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"total_flos": 0.0,
|
| 3 |
+
"train_loss": 0.1488674604743719,
|
| 4 |
+
"train_runtime": 66920.1081,
|
| 5 |
+
"train_samples": 6000,
|
| 6 |
+
"train_samples_per_second": 0.09,
|
| 7 |
+
"train_steps_per_second": 0.011
|
| 8 |
+
}
|
trainer_state.json
ADDED
|
@@ -0,0 +1,1092 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"best_metric": null,
|
| 3 |
+
"best_model_checkpoint": null,
|
| 4 |
+
"epoch": 1.0,
|
| 5 |
+
"eval_steps": 10,
|
| 6 |
+
"global_step": 750,
|
| 7 |
+
"is_hyper_param_search": false,
|
| 8 |
+
"is_local_process_zero": true,
|
| 9 |
+
"is_world_process_zero": true,
|
| 10 |
+
"log_history": [
|
| 11 |
+
{
|
| 12 |
+
"clip_ratio": 0.0,
|
| 13 |
+
"completion_length": 298.3437587738037,
|
| 14 |
+
"epoch": 0.013333333333333334,
|
| 15 |
+
"grad_norm": 0.16560879349708557,
|
| 16 |
+
"kl": 0.00018159300088882446,
|
| 17 |
+
"learning_rate": 4e-07,
|
| 18 |
+
"loss": 0.0049,
|
| 19 |
+
"reward": 0.15208333674818278,
|
| 20 |
+
"reward_std": 0.2552751675248146,
|
| 21 |
+
"rewards/accuracy_reward": 0.06666666846722365,
|
| 22 |
+
"rewards/format_reward": 0.08541666883975267,
|
| 23 |
+
"step": 10
|
| 24 |
+
},
|
| 25 |
+
{
|
| 26 |
+
"clip_ratio": 0.0,
|
| 27 |
+
"completion_length": 314.44792423248293,
|
| 28 |
+
"epoch": 0.02666666666666667,
|
| 29 |
+
"grad_norm": 0.2575075328350067,
|
| 30 |
+
"kl": 0.0009123936295509338,
|
| 31 |
+
"learning_rate": 8e-07,
|
| 32 |
+
"loss": 0.0058,
|
| 33 |
+
"reward": 0.20625000558793544,
|
| 34 |
+
"reward_std": 0.2727560464292765,
|
| 35 |
+
"rewards/accuracy_reward": 0.06458333488553762,
|
| 36 |
+
"rewards/format_reward": 0.14166667070239783,
|
| 37 |
+
"step": 20
|
| 38 |
+
},
|
| 39 |
+
{
|
| 40 |
+
"clip_ratio": 0.0,
|
| 41 |
+
"completion_length": 252.6500078201294,
|
| 42 |
+
"epoch": 0.04,
|
| 43 |
+
"grad_norm": 0.46988776326179504,
|
| 44 |
+
"kl": 0.03377872705459595,
|
| 45 |
+
"learning_rate": 1.2000000000000002e-06,
|
| 46 |
+
"loss": 0.0205,
|
| 47 |
+
"reward": 0.5270833471789956,
|
| 48 |
+
"reward_std": 0.4601708807051182,
|
| 49 |
+
"rewards/accuracy_reward": 0.07916666902601718,
|
| 50 |
+
"rewards/format_reward": 0.44791667852550743,
|
| 51 |
+
"step": 30
|
| 52 |
+
},
|
| 53 |
+
{
|
| 54 |
+
"clip_ratio": 0.0,
|
| 55 |
+
"completion_length": 242.21250705718995,
|
| 56 |
+
"epoch": 0.05333333333333334,
|
| 57 |
+
"grad_norm": 0.19061416387557983,
|
| 58 |
+
"kl": 0.06111354827880859,
|
| 59 |
+
"learning_rate": 1.6e-06,
|
| 60 |
+
"loss": 0.048,
|
| 61 |
+
"reward": 0.8041666891425848,
|
| 62 |
+
"reward_std": 0.4267156172543764,
|
| 63 |
+
"rewards/accuracy_reward": 0.06250000167638063,
|
| 64 |
+
"rewards/format_reward": 0.7416666835546494,
|
| 65 |
+
"step": 40
|
| 66 |
+
},
|
| 67 |
+
{
|
| 68 |
+
"clip_ratio": 0.0,
|
| 69 |
+
"completion_length": 197.73125562667846,
|
| 70 |
+
"epoch": 0.06666666666666667,
|
| 71 |
+
"grad_norm": 0.2476302981376648,
|
| 72 |
+
"kl": 0.0408905029296875,
|
| 73 |
+
"learning_rate": 2e-06,
|
| 74 |
+
"loss": 0.021,
|
| 75 |
+
"reward": 0.8895833583548665,
|
| 76 |
+
"reward_std": 0.4103152878582478,
|
| 77 |
+
"rewards/accuracy_reward": 0.09375000242143869,
|
| 78 |
+
"rewards/format_reward": 0.7958333509042859,
|
| 79 |
+
"step": 50
|
| 80 |
+
},
|
| 81 |
+
{
|
| 82 |
+
"clip_ratio": 0.0,
|
| 83 |
+
"completion_length": 198.86250495910645,
|
| 84 |
+
"epoch": 0.08,
|
| 85 |
+
"grad_norm": 0.13683611154556274,
|
| 86 |
+
"kl": 0.0466217041015625,
|
| 87 |
+
"learning_rate": 2.4000000000000003e-06,
|
| 88 |
+
"loss": 0.0316,
|
| 89 |
+
"reward": 0.9916666936129331,
|
| 90 |
+
"reward_std": 0.36507078595459463,
|
| 91 |
+
"rewards/accuracy_reward": 0.11666666958481073,
|
| 92 |
+
"rewards/format_reward": 0.8750000182539225,
|
| 93 |
+
"step": 60
|
| 94 |
+
},
|
| 95 |
+
{
|
| 96 |
+
"clip_ratio": 0.0,
|
| 97 |
+
"completion_length": 225.4541726589203,
|
| 98 |
+
"epoch": 0.09333333333333334,
|
| 99 |
+
"grad_norm": 0.17669692635536194,
|
| 100 |
+
"kl": 0.06876106262207031,
|
| 101 |
+
"learning_rate": 2.8000000000000003e-06,
|
| 102 |
+
"loss": 0.0388,
|
| 103 |
+
"reward": 1.0520833637565374,
|
| 104 |
+
"reward_std": 0.4207858666777611,
|
| 105 |
+
"rewards/accuracy_reward": 0.19375000540167092,
|
| 106 |
+
"rewards/format_reward": 0.8583333497866988,
|
| 107 |
+
"step": 70
|
| 108 |
+
},
|
| 109 |
+
{
|
| 110 |
+
"clip_ratio": 0.0,
|
| 111 |
+
"completion_length": 194.30625553131102,
|
| 112 |
+
"epoch": 0.10666666666666667,
|
| 113 |
+
"grad_norm": 0.15089309215545654,
|
| 114 |
+
"kl": 0.08316802978515625,
|
| 115 |
+
"learning_rate": 2.9995938617691924e-06,
|
| 116 |
+
"loss": 0.03,
|
| 117 |
+
"reward": 1.1625000346451997,
|
| 118 |
+
"reward_std": 0.44051293805241587,
|
| 119 |
+
"rewards/accuracy_reward": 0.2520833399146795,
|
| 120 |
+
"rewards/format_reward": 0.91041667945683,
|
| 121 |
+
"step": 80
|
| 122 |
+
},
|
| 123 |
+
{
|
| 124 |
+
"clip_ratio": 0.0,
|
| 125 |
+
"completion_length": 202.31667232513428,
|
| 126 |
+
"epoch": 0.12,
|
| 127 |
+
"grad_norm": 0.2549769878387451,
|
| 128 |
+
"kl": 0.06892852783203125,
|
| 129 |
+
"learning_rate": 2.9963460753897363e-06,
|
| 130 |
+
"loss": 0.0229,
|
| 131 |
+
"reward": 1.1770833685994149,
|
| 132 |
+
"reward_std": 0.4563848368823528,
|
| 133 |
+
"rewards/accuracy_reward": 0.2687500063329935,
|
| 134 |
+
"rewards/format_reward": 0.9083333484828472,
|
| 135 |
+
"step": 90
|
| 136 |
+
},
|
| 137 |
+
{
|
| 138 |
+
"clip_ratio": 0.0,
|
| 139 |
+
"completion_length": 215.91458954811097,
|
| 140 |
+
"epoch": 0.13333333333333333,
|
| 141 |
+
"grad_norm": 3.687699556350708,
|
| 142 |
+
"kl": 0.1230712890625,
|
| 143 |
+
"learning_rate": 2.989857536612915e-06,
|
| 144 |
+
"loss": 0.0166,
|
| 145 |
+
"reward": 1.235416704416275,
|
| 146 |
+
"reward_std": 0.4576607421040535,
|
| 147 |
+
"rewards/accuracy_reward": 0.32083334121853113,
|
| 148 |
+
"rewards/format_reward": 0.914583346247673,
|
| 149 |
+
"step": 100
|
| 150 |
+
},
|
| 151 |
+
{
|
| 152 |
+
"clip_ratio": 0.0,
|
| 153 |
+
"completion_length": 231.20208988189697,
|
| 154 |
+
"epoch": 0.14666666666666667,
|
| 155 |
+
"grad_norm": 0.19754290580749512,
|
| 156 |
+
"kl": 0.09471588134765625,
|
| 157 |
+
"learning_rate": 2.980142298168869e-06,
|
| 158 |
+
"loss": 0.0774,
|
| 159 |
+
"reward": 1.204166702181101,
|
| 160 |
+
"reward_std": 0.5094456784427166,
|
| 161 |
+
"rewards/accuracy_reward": 0.329166673310101,
|
| 162 |
+
"rewards/format_reward": 0.8750000186264515,
|
| 163 |
+
"step": 110
|
| 164 |
+
},
|
| 165 |
+
{
|
| 166 |
+
"clip_ratio": 0.0,
|
| 167 |
+
"completion_length": 210.604172039032,
|
| 168 |
+
"epoch": 0.16,
|
| 169 |
+
"grad_norm": 0.9343002438545227,
|
| 170 |
+
"kl": 0.10347900390625,
|
| 171 |
+
"learning_rate": 2.9672214011007086e-06,
|
| 172 |
+
"loss": 0.0425,
|
| 173 |
+
"reward": 1.2375000335276127,
|
| 174 |
+
"reward_std": 0.5164696607738734,
|
| 175 |
+
"rewards/accuracy_reward": 0.35208334103226663,
|
| 176 |
+
"rewards/format_reward": 0.8854166835546493,
|
| 177 |
+
"step": 120
|
| 178 |
+
},
|
| 179 |
+
{
|
| 180 |
+
"clip_ratio": 0.0,
|
| 181 |
+
"completion_length": 254.06667470932007,
|
| 182 |
+
"epoch": 0.17333333333333334,
|
| 183 |
+
"grad_norm": 0.25169649720191956,
|
| 184 |
+
"kl": 0.148199462890625,
|
| 185 |
+
"learning_rate": 2.951122829194296e-06,
|
| 186 |
+
"loss": 0.0796,
|
| 187 |
+
"reward": 1.1187500342726708,
|
| 188 |
+
"reward_std": 0.5015288021415472,
|
| 189 |
+
"rewards/accuracy_reward": 0.26250000670552254,
|
| 190 |
+
"rewards/format_reward": 0.8562500193715096,
|
| 191 |
+
"step": 130
|
| 192 |
+
},
|
| 193 |
+
{
|
| 194 |
+
"clip_ratio": 0.0,
|
| 195 |
+
"completion_length": 233.81875615119935,
|
| 196 |
+
"epoch": 0.18666666666666668,
|
| 197 |
+
"grad_norm": 0.7912704348564148,
|
| 198 |
+
"kl": 2.357049560546875,
|
| 199 |
+
"learning_rate": 2.9318814483715983e-06,
|
| 200 |
+
"loss": 0.1295,
|
| 201 |
+
"reward": 0.9895833631977439,
|
| 202 |
+
"reward_std": 0.5210714556276799,
|
| 203 |
+
"rewards/accuracy_reward": 0.26250000577419996,
|
| 204 |
+
"rewards/format_reward": 0.7270833453163504,
|
| 205 |
+
"step": 140
|
| 206 |
+
},
|
| 207 |
+
{
|
| 208 |
+
"clip_ratio": 0.0,
|
| 209 |
+
"completion_length": 227.87708988189698,
|
| 210 |
+
"epoch": 0.2,
|
| 211 |
+
"grad_norm": 1.25613272190094,
|
| 212 |
+
"kl": 0.46229248046875,
|
| 213 |
+
"learning_rate": 2.9095389311788626e-06,
|
| 214 |
+
"loss": 0.0646,
|
| 215 |
+
"reward": 1.129166703671217,
|
| 216 |
+
"reward_std": 0.49879880994558334,
|
| 217 |
+
"rewards/accuracy_reward": 0.2687500067055225,
|
| 218 |
+
"rewards/format_reward": 0.8604166861623526,
|
| 219 |
+
"step": 150
|
| 220 |
+
},
|
| 221 |
+
{
|
| 222 |
+
"clip_ratio": 0.0,
|
| 223 |
+
"completion_length": 194.6770890235901,
|
| 224 |
+
"epoch": 0.21333333333333335,
|
| 225 |
+
"grad_norm": 0.4988195300102234,
|
| 226 |
+
"kl": 0.613861083984375,
|
| 227 |
+
"learning_rate": 2.8841436665331635e-06,
|
| 228 |
+
"loss": 0.0366,
|
| 229 |
+
"reward": 1.2395833693444729,
|
| 230 |
+
"reward_std": 0.48180873580276967,
|
| 231 |
+
"rewards/accuracy_reward": 0.31666667591780423,
|
| 232 |
+
"rewards/format_reward": 0.922916679084301,
|
| 233 |
+
"step": 160
|
| 234 |
+
},
|
| 235 |
+
{
|
| 236 |
+
"clip_ratio": 0.0,
|
| 237 |
+
"completion_length": 168.8062547683716,
|
| 238 |
+
"epoch": 0.22666666666666666,
|
| 239 |
+
"grad_norm": 0.9171387553215027,
|
| 240 |
+
"kl": 1.17796630859375,
|
| 241 |
+
"learning_rate": 2.855750654922781e-06,
|
| 242 |
+
"loss": 0.0156,
|
| 243 |
+
"reward": 1.1541667036712169,
|
| 244 |
+
"reward_std": 0.5033410575240851,
|
| 245 |
+
"rewards/accuracy_reward": 0.25416667219251393,
|
| 246 |
+
"rewards/format_reward": 0.9000000156462192,
|
| 247 |
+
"step": 170
|
| 248 |
+
},
|
| 249 |
+
{
|
| 250 |
+
"clip_ratio": 0.0,
|
| 251 |
+
"completion_length": 241.8708402633667,
|
| 252 |
+
"epoch": 0.24,
|
| 253 |
+
"grad_norm": 25.64914894104004,
|
| 254 |
+
"kl": 114.61384887695313,
|
| 255 |
+
"learning_rate": 2.8244213892883906e-06,
|
| 256 |
+
"loss": 2.7595,
|
| 257 |
+
"reward": 1.181250037252903,
|
| 258 |
+
"reward_std": 0.51867739520967,
|
| 259 |
+
"rewards/accuracy_reward": 0.31041667331010103,
|
| 260 |
+
"rewards/format_reward": 0.8708333529531955,
|
| 261 |
+
"step": 180
|
| 262 |
+
},
|
| 263 |
+
{
|
| 264 |
+
"clip_ratio": 0.0,
|
| 265 |
+
"completion_length": 314.0875092506409,
|
| 266 |
+
"epoch": 0.25333333333333335,
|
| 267 |
+
"grad_norm": 0.8180872797966003,
|
| 268 |
+
"kl": 2.062310791015625,
|
| 269 |
+
"learning_rate": 2.7902237218430485e-06,
|
| 270 |
+
"loss": 0.1151,
|
| 271 |
+
"reward": 1.1354166999459268,
|
| 272 |
+
"reward_std": 0.5186546068638563,
|
| 273 |
+
"rewards/accuracy_reward": 0.26458334010094403,
|
| 274 |
+
"rewards/format_reward": 0.8708333499729634,
|
| 275 |
+
"step": 190
|
| 276 |
+
},
|
| 277 |
+
{
|
| 278 |
+
"clip_ratio": 0.0,
|
| 279 |
+
"completion_length": 271.76875801086425,
|
| 280 |
+
"epoch": 0.26666666666666666,
|
| 281 |
+
"grad_norm": 2.5058634281158447,
|
| 282 |
+
"kl": 1.689434814453125,
|
| 283 |
+
"learning_rate": 2.753231717119405e-06,
|
| 284 |
+
"loss": 0.0826,
|
| 285 |
+
"reward": 1.1770833715796472,
|
| 286 |
+
"reward_std": 0.5468059632927179,
|
| 287 |
+
"rewards/accuracy_reward": 0.3104166744276881,
|
| 288 |
+
"rewards/format_reward": 0.8666666835546494,
|
| 289 |
+
"step": 200
|
| 290 |
+
},
|
| 291 |
+
{
|
| 292 |
+
"clip_ratio": 0.0,
|
| 293 |
+
"completion_length": 189.7958378791809,
|
| 294 |
+
"epoch": 0.28,
|
| 295 |
+
"grad_norm": 0.8333961367607117,
|
| 296 |
+
"kl": 2.188385009765625,
|
| 297 |
+
"learning_rate": 2.713525491562421e-06,
|
| 298 |
+
"loss": 0.159,
|
| 299 |
+
"reward": 1.1291666947305203,
|
| 300 |
+
"reward_std": 0.48742703087627887,
|
| 301 |
+
"rewards/accuracy_reward": 0.2375000048428774,
|
| 302 |
+
"rewards/format_reward": 0.8916666850447654,
|
| 303 |
+
"step": 210
|
| 304 |
+
},
|
| 305 |
+
{
|
| 306 |
+
"clip_ratio": 0.0,
|
| 307 |
+
"completion_length": 169.8958384513855,
|
| 308 |
+
"epoch": 0.29333333333333333,
|
| 309 |
+
"grad_norm": 0.48866531252861023,
|
| 310 |
+
"kl": 1.365594482421875,
|
| 311 |
+
"learning_rate": 2.671191040014989e-06,
|
| 312 |
+
"loss": 0.1571,
|
| 313 |
+
"reward": 1.214583370089531,
|
| 314 |
+
"reward_std": 0.45735101476311685,
|
| 315 |
+
"rewards/accuracy_reward": 0.2812500067055225,
|
| 316 |
+
"rewards/format_reward": 0.9333333462476731,
|
| 317 |
+
"step": 220
|
| 318 |
+
},
|
| 319 |
+
{
|
| 320 |
+
"clip_ratio": 0.0,
|
| 321 |
+
"completion_length": 210.16042280197144,
|
| 322 |
+
"epoch": 0.30666666666666664,
|
| 323 |
+
"grad_norm": 0.4208928346633911,
|
| 324 |
+
"kl": 1.861163330078125,
|
| 325 |
+
"learning_rate": 2.626320049472249e-06,
|
| 326 |
+
"loss": 0.2113,
|
| 327 |
+
"reward": 1.1687500353902578,
|
| 328 |
+
"reward_std": 0.48322329856455326,
|
| 329 |
+
"rewards/accuracy_reward": 0.3020833406597376,
|
| 330 |
+
"rewards/format_reward": 0.866666679084301,
|
| 331 |
+
"step": 230
|
| 332 |
+
},
|
| 333 |
+
{
|
| 334 |
+
"clip_ratio": 0.0,
|
| 335 |
+
"completion_length": 213.62292337417603,
|
| 336 |
+
"epoch": 0.32,
|
| 337 |
+
"grad_norm": 0.9921014308929443,
|
| 338 |
+
"kl": 5.52261962890625,
|
| 339 |
+
"learning_rate": 2.5790097005079765e-06,
|
| 340 |
+
"loss": 0.4186,
|
| 341 |
+
"reward": 1.1104166995733977,
|
| 342 |
+
"reward_std": 0.5192686680704355,
|
| 343 |
+
"rewards/accuracy_reward": 0.26250000651925803,
|
| 344 |
+
"rewards/format_reward": 0.8479166831821203,
|
| 345 |
+
"step": 240
|
| 346 |
+
},
|
| 347 |
+
{
|
| 348 |
+
"clip_ratio": 0.0,
|
| 349 |
+
"completion_length": 173.20625500679017,
|
| 350 |
+
"epoch": 0.3333333333333333,
|
| 351 |
+
"grad_norm": 0.5788355469703674,
|
| 352 |
+
"kl": 0.586700439453125,
|
| 353 |
+
"learning_rate": 2.529362456803101e-06,
|
| 354 |
+
"loss": 0.0873,
|
| 355 |
+
"reward": 1.2354166999459266,
|
| 356 |
+
"reward_std": 0.5144322618842125,
|
| 357 |
+
"rewards/accuracy_reward": 0.32708334140479567,
|
| 358 |
+
"rewards/format_reward": 0.9083333492279053,
|
| 359 |
+
"step": 250
|
| 360 |
+
},
|
| 361 |
+
{
|
| 362 |
+
"clip_ratio": 0.0,
|
| 363 |
+
"completion_length": 170.66458702087402,
|
| 364 |
+
"epoch": 0.3466666666666667,
|
| 365 |
+
"grad_norm": 1.29031503200531,
|
| 366 |
+
"kl": 3.8255126953125,
|
| 367 |
+
"learning_rate": 2.477485843232183e-06,
|
| 368 |
+
"loss": 0.2837,
|
| 369 |
+
"reward": 1.2604167006909848,
|
| 370 |
+
"reward_std": 0.5114245742559433,
|
| 371 |
+
"rewards/accuracy_reward": 0.3416666738688946,
|
| 372 |
+
"rewards/format_reward": 0.918750012665987,
|
| 373 |
+
"step": 260
|
| 374 |
+
},
|
| 375 |
+
{
|
| 376 |
+
"clip_ratio": 0.0,
|
| 377 |
+
"completion_length": 167.50208835601808,
|
| 378 |
+
"epoch": 0.36,
|
| 379 |
+
"grad_norm": 0.6127444505691528,
|
| 380 |
+
"kl": 0.5264404296875,
|
| 381 |
+
"learning_rate": 2.4234922129884873e-06,
|
| 382 |
+
"loss": 0.0213,
|
| 383 |
+
"reward": 1.3562500387430192,
|
| 384 |
+
"reward_std": 0.42282451651990416,
|
| 385 |
+
"rewards/accuracy_reward": 0.38958334233611824,
|
| 386 |
+
"rewards/format_reward": 0.9666666738688946,
|
| 387 |
+
"step": 270
|
| 388 |
+
},
|
| 389 |
+
{
|
| 390 |
+
"clip_ratio": 0.0,
|
| 391 |
+
"completion_length": 177.09583835601808,
|
| 392 |
+
"epoch": 0.37333333333333335,
|
| 393 |
+
"grad_norm": 0.6640939712524414,
|
| 394 |
+
"kl": 1.479010009765625,
|
| 395 |
+
"learning_rate": 2.36749850425198e-06,
|
| 396 |
+
"loss": 0.1688,
|
| 397 |
+
"reward": 1.250000035762787,
|
| 398 |
+
"reward_std": 0.4655508127063513,
|
| 399 |
+
"rewards/accuracy_reward": 0.3479166755452752,
|
| 400 |
+
"rewards/format_reward": 0.9020833499729634,
|
| 401 |
+
"step": 280
|
| 402 |
+
},
|
| 403 |
+
{
|
| 404 |
+
"clip_ratio": 0.0,
|
| 405 |
+
"completion_length": 198.85000591278077,
|
| 406 |
+
"epoch": 0.38666666666666666,
|
| 407 |
+
"grad_norm": 0.14313329756259918,
|
| 408 |
+
"kl": 1.668316650390625,
|
| 409 |
+
"learning_rate": 2.3096259869272697e-06,
|
| 410 |
+
"loss": 0.1292,
|
| 411 |
+
"reward": 1.289583370834589,
|
| 412 |
+
"reward_std": 0.47122009098529816,
|
| 413 |
+
"rewards/accuracy_reward": 0.3645833419635892,
|
| 414 |
+
"rewards/format_reward": 0.9250000134110451,
|
| 415 |
+
"step": 290
|
| 416 |
+
},
|
| 417 |
+
{
|
| 418 |
+
"clip_ratio": 0.0,
|
| 419 |
+
"completion_length": 230.99375743865966,
|
| 420 |
+
"epoch": 0.4,
|
| 421 |
+
"grad_norm": 0.10921728610992432,
|
| 422 |
+
"kl": 0.85283203125,
|
| 423 |
+
"learning_rate": 2.25e-06,
|
| 424 |
+
"loss": 0.0644,
|
| 425 |
+
"reward": 1.3041667066514493,
|
| 426 |
+
"reward_std": 0.4090763859450817,
|
| 427 |
+
"rewards/accuracy_reward": 0.37500000894069674,
|
| 428 |
+
"rewards/format_reward": 0.9291666768491268,
|
| 429 |
+
"step": 300
|
| 430 |
+
},
|
| 431 |
+
{
|
| 432 |
+
"clip_ratio": 0.0,
|
| 433 |
+
"completion_length": 270.9208402633667,
|
| 434 |
+
"epoch": 0.41333333333333333,
|
| 435 |
+
"grad_norm": 1.005725383758545,
|
| 436 |
+
"kl": 0.2567535400390625,
|
| 437 |
+
"learning_rate": 2.1887496800805174e-06,
|
| 438 |
+
"loss": 0.035,
|
| 439 |
+
"reward": 1.333333370089531,
|
| 440 |
+
"reward_std": 0.46985283866524696,
|
| 441 |
+
"rewards/accuracy_reward": 0.3937500087544322,
|
| 442 |
+
"rewards/format_reward": 0.939583346992731,
|
| 443 |
+
"step": 310
|
| 444 |
+
},
|
| 445 |
+
{
|
| 446 |
+
"clip_ratio": 0.0,
|
| 447 |
+
"completion_length": 238.92500734329224,
|
| 448 |
+
"epoch": 0.4266666666666667,
|
| 449 |
+
"grad_norm": 1.076439380645752,
|
| 450 |
+
"kl": 1.3035552978515625,
|
| 451 |
+
"learning_rate": 2.126007681722727e-06,
|
| 452 |
+
"loss": 0.1024,
|
| 453 |
+
"reward": 1.2500000342726707,
|
| 454 |
+
"reward_std": 0.48043784201145173,
|
| 455 |
+
"rewards/accuracy_reward": 0.35625000931322576,
|
| 456 |
+
"rewards/format_reward": 0.8937500141561031,
|
| 457 |
+
"step": 320
|
| 458 |
+
},
|
| 459 |
+
{
|
| 460 |
+
"clip_ratio": 0.0,
|
| 461 |
+
"completion_length": 414.82501125335693,
|
| 462 |
+
"epoch": 0.44,
|
| 463 |
+
"grad_norm": 0.6154415011405945,
|
| 464 |
+
"kl": 4.590509033203125,
|
| 465 |
+
"learning_rate": 2.061909890123868e-06,
|
| 466 |
+
"loss": 0.2873,
|
| 467 |
+
"reward": 0.777083358168602,
|
| 468 |
+
"reward_std": 0.4854964125901461,
|
| 469 |
+
"rewards/accuracy_reward": 0.22083333935588598,
|
| 470 |
+
"rewards/format_reward": 0.5562500126659871,
|
| 471 |
+
"step": 330
|
| 472 |
+
},
|
| 473 |
+
{
|
| 474 |
+
"clip_ratio": 0.0,
|
| 475 |
+
"completion_length": 237.14375581741334,
|
| 476 |
+
"epoch": 0.4533333333333333,
|
| 477 |
+
"grad_norm": 0.4070974886417389,
|
| 478 |
+
"kl": 0.4917999267578125,
|
| 479 |
+
"learning_rate": 1.9965951268274372e-06,
|
| 480 |
+
"loss": 0.0908,
|
| 481 |
+
"reward": 1.347916703671217,
|
| 482 |
+
"reward_std": 0.5186698414385319,
|
| 483 |
+
"rewards/accuracy_reward": 0.4395833432674408,
|
| 484 |
+
"rewards/format_reward": 0.9083333507180213,
|
| 485 |
+
"step": 340
|
| 486 |
+
},
|
| 487 |
+
{
|
| 488 |
+
"clip_ratio": 0.0,
|
| 489 |
+
"completion_length": 211.02292304039003,
|
| 490 |
+
"epoch": 0.4666666666666667,
|
| 491 |
+
"grad_norm": 0.7467241883277893,
|
| 492 |
+
"kl": 1.289691162109375,
|
| 493 |
+
"learning_rate": 1.9302048490666355e-06,
|
| 494 |
+
"loss": 0.1216,
|
| 495 |
+
"reward": 1.3833333637565375,
|
| 496 |
+
"reward_std": 0.4452923540025949,
|
| 497 |
+
"rewards/accuracy_reward": 0.4604166755452752,
|
| 498 |
+
"rewards/format_reward": 0.9229166809469461,
|
| 499 |
+
"step": 350
|
| 500 |
+
},
|
| 501 |
+
{
|
| 502 |
+
"clip_ratio": 0.0,
|
| 503 |
+
"completion_length": 207.78333921432494,
|
| 504 |
+
"epoch": 0.48,
|
| 505 |
+
"grad_norm": 0.5213920474052429,
|
| 506 |
+
"kl": 0.3299652099609375,
|
| 507 |
+
"learning_rate": 1.8628828433995015e-06,
|
| 508 |
+
"loss": 0.0802,
|
| 509 |
+
"reward": 1.354166705906391,
|
| 510 |
+
"reward_std": 0.43137194626033304,
|
| 511 |
+
"rewards/accuracy_reward": 0.4145833427086473,
|
| 512 |
+
"rewards/format_reward": 0.9395833432674408,
|
| 513 |
+
"step": 360
|
| 514 |
+
},
|
| 515 |
+
{
|
| 516 |
+
"clip_ratio": 0.0,
|
| 517 |
+
"completion_length": 214.07083945274354,
|
| 518 |
+
"epoch": 0.49333333333333335,
|
| 519 |
+
"grad_norm": 11.964993476867676,
|
| 520 |
+
"kl": 1.5061492919921875,
|
| 521 |
+
"learning_rate": 1.7947749142992453e-06,
|
| 522 |
+
"loss": 0.1615,
|
| 523 |
+
"reward": 1.2437500320374966,
|
| 524 |
+
"reward_std": 0.4532905198633671,
|
| 525 |
+
"rewards/accuracy_reward": 0.3145833395421505,
|
| 526 |
+
"rewards/format_reward": 0.9291666775941849,
|
| 527 |
+
"step": 370
|
| 528 |
+
},
|
| 529 |
+
{
|
| 530 |
+
"clip_ratio": 0.0,
|
| 531 |
+
"completion_length": 231.10625724792482,
|
| 532 |
+
"epoch": 0.5066666666666667,
|
| 533 |
+
"grad_norm": 0.7543414235115051,
|
| 534 |
+
"kl": 0.93128662109375,
|
| 535 |
+
"learning_rate": 1.7260285683742248e-06,
|
| 536 |
+
"loss": 0.1419,
|
| 537 |
+
"reward": 1.3000000320374965,
|
| 538 |
+
"reward_std": 0.5549088928848505,
|
| 539 |
+
"rewards/accuracy_reward": 0.4020833412185311,
|
| 540 |
+
"rewards/format_reward": 0.8979166842997074,
|
| 541 |
+
"step": 380
|
| 542 |
+
},
|
| 543 |
+
{
|
| 544 |
+
"clip_ratio": 0.0,
|
| 545 |
+
"completion_length": 234.94167280197144,
|
| 546 |
+
"epoch": 0.52,
|
| 547 |
+
"grad_norm": 1.8742121458053589,
|
| 548 |
+
"kl": 37.191220092773435,
|
| 549 |
+
"learning_rate": 1.6567926949014804e-06,
|
| 550 |
+
"loss": 0.5318,
|
| 551 |
+
"reward": 1.3187500394880771,
|
| 552 |
+
"reward_std": 0.5167587421834469,
|
| 553 |
+
"rewards/accuracy_reward": 0.40833334214985373,
|
| 554 |
+
"rewards/format_reward": 0.9104166820645332,
|
| 555 |
+
"step": 390
|
| 556 |
+
},
|
| 557 |
+
{
|
| 558 |
+
"clip_ratio": 0.0,
|
| 559 |
+
"completion_length": 188.943754863739,
|
| 560 |
+
"epoch": 0.5333333333333333,
|
| 561 |
+
"grad_norm": 0.14478746056556702,
|
| 562 |
+
"kl": 0.573187255859375,
|
| 563 |
+
"learning_rate": 1.5872172433657137e-06,
|
| 564 |
+
"loss": 0.0723,
|
| 565 |
+
"reward": 1.3020833745598792,
|
| 566 |
+
"reward_std": 0.4792703174054623,
|
| 567 |
+
"rewards/accuracy_reward": 0.3645833421498537,
|
| 568 |
+
"rewards/format_reward": 0.9375000111758709,
|
| 569 |
+
"step": 400
|
| 570 |
+
},
|
| 571 |
+
{
|
| 572 |
+
"clip_ratio": 0.0,
|
| 573 |
+
"completion_length": 178.75833768844603,
|
| 574 |
+
"epoch": 0.5466666666666666,
|
| 575 |
+
"grad_norm": 1.8087667226791382,
|
| 576 |
+
"kl": 0.8369659423828125,
|
| 577 |
+
"learning_rate": 1.5174528987020958e-06,
|
| 578 |
+
"loss": 0.0923,
|
| 579 |
+
"reward": 1.3125000409781933,
|
| 580 |
+
"reward_std": 0.48596611246466637,
|
| 581 |
+
"rewards/accuracy_reward": 0.39166667591780424,
|
| 582 |
+
"rewards/format_reward": 0.9208333469927311,
|
| 583 |
+
"step": 410
|
| 584 |
+
},
|
| 585 |
+
{
|
| 586 |
+
"clip_ratio": 0.0,
|
| 587 |
+
"completion_length": 256.539590215683,
|
| 588 |
+
"epoch": 0.56,
|
| 589 |
+
"grad_norm": 0.5763727426528931,
|
| 590 |
+
"kl": 2.3948883056640624,
|
| 591 |
+
"learning_rate": 1.4476507549462489e-06,
|
| 592 |
+
"loss": 0.2606,
|
| 593 |
+
"reward": 1.1541667029261589,
|
| 594 |
+
"reward_std": 0.6029179282486439,
|
| 595 |
+
"rewards/accuracy_reward": 0.35000000819563865,
|
| 596 |
+
"rewards/format_reward": 0.8041666833683848,
|
| 597 |
+
"step": 420
|
| 598 |
+
},
|
| 599 |
+
{
|
| 600 |
+
"clip_ratio": 0.0,
|
| 601 |
+
"completion_length": 163.55833940505983,
|
| 602 |
+
"epoch": 0.5733333333333334,
|
| 603 |
+
"grad_norm": 0.23491673171520233,
|
| 604 |
+
"kl": 0.215203857421875,
|
| 605 |
+
"learning_rate": 1.3779619879982127e-06,
|
| 606 |
+
"loss": 0.023,
|
| 607 |
+
"reward": 1.420833373069763,
|
| 608 |
+
"reward_std": 0.41848115585744383,
|
| 609 |
+
"rewards/accuracy_reward": 0.4520833443850279,
|
| 610 |
+
"rewards/format_reward": 0.9687500074505806,
|
| 611 |
+
"step": 430
|
| 612 |
+
},
|
| 613 |
+
{
|
| 614 |
+
"clip_ratio": 0.0,
|
| 615 |
+
"completion_length": 183.7666721343994,
|
| 616 |
+
"epoch": 0.5866666666666667,
|
| 617 |
+
"grad_norm": 0.1774040013551712,
|
| 618 |
+
"kl": 0.300738525390625,
|
| 619 |
+
"learning_rate": 1.308537528209108e-06,
|
| 620 |
+
"loss": 0.0643,
|
| 621 |
+
"reward": 1.4270833656191826,
|
| 622 |
+
"reward_std": 0.4158630233258009,
|
| 623 |
+
"rewards/accuracy_reward": 0.46666667573153975,
|
| 624 |
+
"rewards/format_reward": 0.9604166753590107,
|
| 625 |
+
"step": 440
|
| 626 |
+
},
|
| 627 |
+
{
|
| 628 |
+
"clip_ratio": 0.0,
|
| 629 |
+
"completion_length": 212.7937566280365,
|
| 630 |
+
"epoch": 0.6,
|
| 631 |
+
"grad_norm": 0.20609110593795776,
|
| 632 |
+
"kl": 0.5560638427734375,
|
| 633 |
+
"learning_rate": 1.2395277334996047e-06,
|
| 634 |
+
"loss": 0.0963,
|
| 635 |
+
"reward": 1.3229166999459268,
|
| 636 |
+
"reward_std": 0.4623309187591076,
|
| 637 |
+
"rewards/accuracy_reward": 0.3937500096857548,
|
| 638 |
+
"rewards/format_reward": 0.9291666783392429,
|
| 639 |
+
"step": 450
|
| 640 |
+
},
|
| 641 |
+
{
|
| 642 |
+
"clip_ratio": 0.0,
|
| 643 |
+
"completion_length": 189.80208778381348,
|
| 644 |
+
"epoch": 0.6133333333333333,
|
| 645 |
+
"grad_norm": 0.49082836508750916,
|
| 646 |
+
"kl": 0.7411895751953125,
|
| 647 |
+
"learning_rate": 1.1710820637181448e-06,
|
| 648 |
+
"loss": 0.0805,
|
| 649 |
+
"reward": 1.320833370834589,
|
| 650 |
+
"reward_std": 0.4459747776389122,
|
| 651 |
+
"rewards/accuracy_reward": 0.37916667480021715,
|
| 652 |
+
"rewards/format_reward": 0.9416666768491269,
|
| 653 |
+
"step": 460
|
| 654 |
+
},
|
| 655 |
+
{
|
| 656 |
+
"clip_ratio": 0.0,
|
| 657 |
+
"completion_length": 194.38542304039,
|
| 658 |
+
"epoch": 0.6266666666666667,
|
| 659 |
+
"grad_norm": 0.48382291197776794,
|
| 660 |
+
"kl": 0.4151397705078125,
|
| 661 |
+
"learning_rate": 1.103348756944197e-06,
|
| 662 |
+
"loss": 0.0534,
|
| 663 |
+
"reward": 1.3812500394880771,
|
| 664 |
+
"reward_std": 0.480151966586709,
|
| 665 |
+
"rewards/accuracy_reward": 0.4250000108033419,
|
| 666 |
+
"rewards/format_reward": 0.9562500081956387,
|
| 667 |
+
"step": 470
|
| 668 |
+
},
|
| 669 |
+
{
|
| 670 |
+
"clip_ratio": 0.0,
|
| 671 |
+
"completion_length": 220.32292351722717,
|
| 672 |
+
"epoch": 0.64,
|
| 673 |
+
"grad_norm": 0.2328379899263382,
|
| 674 |
+
"kl": 0.377593994140625,
|
| 675 |
+
"learning_rate": 1.036474508437579e-06,
|
| 676 |
+
"loss": 0.0734,
|
| 677 |
+
"reward": 1.318750038743019,
|
| 678 |
+
"reward_std": 0.47938378117978575,
|
| 679 |
+
"rewards/accuracy_reward": 0.37708334289491174,
|
| 680 |
+
"rewards/format_reward": 0.9416666783392429,
|
| 681 |
+
"step": 480
|
| 682 |
+
},
|
| 683 |
+
{
|
| 684 |
+
"clip_ratio": 0.0,
|
| 685 |
+
"completion_length": 213.46458911895752,
|
| 686 |
+
"epoch": 0.6533333333333333,
|
| 687 |
+
"grad_norm": 0.6423675417900085,
|
| 688 |
+
"kl": 0.6955718994140625,
|
| 689 |
+
"learning_rate": 9.70604152929197e-07,
|
| 690 |
+
"loss": 0.1096,
|
| 691 |
+
"reward": 1.3416667044162751,
|
| 692 |
+
"reward_std": 0.46137820817530156,
|
| 693 |
+
"rewards/accuracy_reward": 0.4145833419635892,
|
| 694 |
+
"rewards/format_reward": 0.9270833462476731,
|
| 695 |
+
"step": 490
|
| 696 |
+
},
|
| 697 |
+
{
|
| 698 |
+
"clip_ratio": 0.0,
|
| 699 |
+
"completion_length": 214.08125677108765,
|
| 700 |
+
"epoch": 0.6666666666666666,
|
| 701 |
+
"grad_norm": 0.14841440320014954,
|
| 702 |
+
"kl": 0.7181640625,
|
| 703 |
+
"learning_rate": 9.058803509412648e-07,
|
| 704 |
+
"loss": 0.0987,
|
| 705 |
+
"reward": 1.397916704416275,
|
| 706 |
+
"reward_std": 0.44944200329482553,
|
| 707 |
+
"rewards/accuracy_reward": 0.46041667945683,
|
| 708 |
+
"rewards/format_reward": 0.9375000111758709,
|
| 709 |
+
"step": 500
|
| 710 |
+
},
|
| 711 |
+
{
|
| 712 |
+
"clip_ratio": 0.0,
|
| 713 |
+
"completion_length": 226.89792413711547,
|
| 714 |
+
"epoch": 0.68,
|
| 715 |
+
"grad_norm": 0.20204541087150574,
|
| 716 |
+
"kl": 0.37396240234375,
|
| 717 |
+
"learning_rate": 8.424432798163837e-07,
|
| 718 |
+
"loss": 0.075,
|
| 719 |
+
"reward": 1.4020833641290664,
|
| 720 |
+
"reward_std": 0.3638565935194492,
|
| 721 |
+
"rewards/accuracy_reward": 0.45000000968575476,
|
| 722 |
+
"rewards/format_reward": 0.9520833425223827,
|
| 723 |
+
"step": 510
|
| 724 |
+
},
|
| 725 |
+
{
|
| 726 |
+
"clip_ratio": 0.0,
|
| 727 |
+
"completion_length": 227.1395909309387,
|
| 728 |
+
"epoch": 0.6933333333333334,
|
| 729 |
+
"grad_norm": 0.170625239610672,
|
| 730 |
+
"kl": 0.7568450927734375,
|
| 731 |
+
"learning_rate": 7.804303301246311e-07,
|
| 732 |
+
"loss": 0.0984,
|
| 733 |
+
"reward": 1.331250037252903,
|
| 734 |
+
"reward_std": 0.48546464554965496,
|
| 735 |
+
"rewards/accuracy_reward": 0.40000001061707735,
|
| 736 |
+
"rewards/format_reward": 0.9312500089406968,
|
| 737 |
+
"step": 520
|
| 738 |
+
},
|
| 739 |
+
{
|
| 740 |
+
"clip_ratio": 0.0,
|
| 741 |
+
"completion_length": 222.33542160987855,
|
| 742 |
+
"epoch": 0.7066666666666667,
|
| 743 |
+
"grad_norm": 0.35064828395843506,
|
| 744 |
+
"kl": 0.613885498046875,
|
| 745 |
+
"learning_rate": 7.19975808106177e-07,
|
| 746 |
+
"loss": 0.0488,
|
| 747 |
+
"reward": 1.3625000312924385,
|
| 748 |
+
"reward_std": 0.44792898930609226,
|
| 749 |
+
"rewards/accuracy_reward": 0.4104166755452752,
|
| 750 |
+
"rewards/format_reward": 0.9520833417773247,
|
| 751 |
+
"step": 530
|
| 752 |
+
},
|
| 753 |
+
{
|
| 754 |
+
"clip_ratio": 0.0,
|
| 755 |
+
"completion_length": 237.87292375564576,
|
| 756 |
+
"epoch": 0.72,
|
| 757 |
+
"grad_norm": 0.3742374777793884,
|
| 758 |
+
"kl": 0.584375,
|
| 759 |
+
"learning_rate": 6.6121064479388e-07,
|
| 760 |
+
"loss": 0.0612,
|
| 761 |
+
"reward": 1.4020833656191827,
|
| 762 |
+
"reward_std": 0.4303410712629557,
|
| 763 |
+
"rewards/accuracy_reward": 0.46041667759418486,
|
| 764 |
+
"rewards/format_reward": 0.9416666768491269,
|
| 765 |
+
"step": 540
|
| 766 |
+
},
|
| 767 |
+
{
|
| 768 |
+
"clip_ratio": 0.0,
|
| 769 |
+
"completion_length": 244.73542499542236,
|
| 770 |
+
"epoch": 0.7333333333333333,
|
| 771 |
+
"grad_norm": 0.346811980009079,
|
| 772 |
+
"kl": 0.83583984375,
|
| 773 |
+
"learning_rate": 6.04262112445821e-07,
|
| 774 |
+
"loss": 0.1029,
|
| 775 |
+
"reward": 1.293750037997961,
|
| 776 |
+
"reward_std": 0.48419367931783197,
|
| 777 |
+
"rewards/accuracy_reward": 0.3791666770353913,
|
| 778 |
+
"rewards/format_reward": 0.9145833477377892,
|
| 779 |
+
"step": 550
|
| 780 |
+
},
|
| 781 |
+
{
|
| 782 |
+
"clip_ratio": 0.0,
|
| 783 |
+
"completion_length": 268.9645917892456,
|
| 784 |
+
"epoch": 0.7466666666666667,
|
| 785 |
+
"grad_norm": 0.14408645033836365,
|
| 786 |
+
"kl": 0.513336181640625,
|
| 787 |
+
"learning_rate": 5.492535489019345e-07,
|
| 788 |
+
"loss": 0.084,
|
| 789 |
+
"reward": 1.2875000312924385,
|
| 790 |
+
"reward_std": 0.48581976890563966,
|
| 791 |
+
"rewards/accuracy_reward": 0.3770833395421505,
|
| 792 |
+
"rewards/format_reward": 0.9104166757315397,
|
| 793 |
+
"step": 560
|
| 794 |
+
},
|
| 795 |
+
{
|
| 796 |
+
"clip_ratio": 0.0,
|
| 797 |
+
"completion_length": 241.53333921432494,
|
| 798 |
+
"epoch": 0.76,
|
| 799 |
+
"grad_norm": 1.40211021900177,
|
| 800 |
+
"kl": 0.8751678466796875,
|
| 801 |
+
"learning_rate": 4.963040904617131e-07,
|
| 802 |
+
"loss": 0.1203,
|
| 803 |
+
"reward": 1.3145833693444728,
|
| 804 |
+
"reward_std": 0.49484665393829347,
|
| 805 |
+
"rewards/accuracy_reward": 0.4145833423361182,
|
| 806 |
+
"rewards/format_reward": 0.9000000134110451,
|
| 807 |
+
"step": 570
|
| 808 |
+
},
|
| 809 |
+
{
|
| 810 |
+
"clip_ratio": 0.0,
|
| 811 |
+
"completion_length": 252.40000743865966,
|
| 812 |
+
"epoch": 0.7733333333333333,
|
| 813 |
+
"grad_norm": 0.4801377058029175,
|
| 814 |
+
"kl": 1.2982696533203124,
|
| 815 |
+
"learning_rate": 4.4552841386150737e-07,
|
| 816 |
+
"loss": 0.1253,
|
| 817 |
+
"reward": 1.2708333659917117,
|
| 818 |
+
"reward_std": 0.5930769924074412,
|
| 819 |
+
"rewards/accuracy_reward": 0.43541667610406876,
|
| 820 |
+
"rewards/format_reward": 0.8354166846722364,
|
| 821 |
+
"step": 580
|
| 822 |
+
},
|
| 823 |
+
{
|
| 824 |
+
"clip_ratio": 0.0,
|
| 825 |
+
"completion_length": 259.3583409309387,
|
| 826 |
+
"epoch": 0.7866666666666666,
|
| 827 |
+
"grad_norm": 1.0408235788345337,
|
| 828 |
+
"kl": 1.4053619384765625,
|
| 829 |
+
"learning_rate": 3.9703648791025716e-07,
|
| 830 |
+
"loss": 0.183,
|
| 831 |
+
"reward": 1.1916666943579912,
|
| 832 |
+
"reward_std": 0.6191505286842585,
|
| 833 |
+
"rewards/accuracy_reward": 0.3854166746139526,
|
| 834 |
+
"rewards/format_reward": 0.8062500186264515,
|
| 835 |
+
"step": 590
|
| 836 |
+
},
|
| 837 |
+
{
|
| 838 |
+
"clip_ratio": 0.0,
|
| 839 |
+
"completion_length": 243.28750715255737,
|
| 840 |
+
"epoch": 0.8,
|
| 841 |
+
"grad_norm": 0.2709506154060364,
|
| 842 |
+
"kl": 0.96761474609375,
|
| 843 |
+
"learning_rate": 3.5093333532153313e-07,
|
| 844 |
+
"loss": 0.1034,
|
| 845 |
+
"reward": 1.316666693240404,
|
| 846 |
+
"reward_std": 0.46122562885284424,
|
| 847 |
+
"rewards/accuracy_reward": 0.4354166748002172,
|
| 848 |
+
"rewards/format_reward": 0.8812500096857547,
|
| 849 |
+
"step": 600
|
| 850 |
+
},
|
| 851 |
+
{
|
| 852 |
+
"clip_ratio": 0.0,
|
| 853 |
+
"completion_length": 218.83542261123657,
|
| 854 |
+
"epoch": 0.8133333333333334,
|
| 855 |
+
"grad_norm": 0.19969280064105988,
|
| 856 |
+
"kl": 0.4908477783203125,
|
| 857 |
+
"learning_rate": 3.073188052577282e-07,
|
| 858 |
+
"loss": 0.0814,
|
| 859 |
+
"reward": 1.3458333656191825,
|
| 860 |
+
"reward_std": 0.4190520565956831,
|
| 861 |
+
"rewards/accuracy_reward": 0.4041666744276881,
|
| 862 |
+
"rewards/format_reward": 0.9416666775941849,
|
| 863 |
+
"step": 610
|
| 864 |
+
},
|
| 865 |
+
{
|
| 866 |
+
"clip_ratio": 0.0,
|
| 867 |
+
"completion_length": 216.3875057220459,
|
| 868 |
+
"epoch": 0.8266666666666667,
|
| 869 |
+
"grad_norm": 0.23758280277252197,
|
| 870 |
+
"kl": 0.64254150390625,
|
| 871 |
+
"learning_rate": 2.6628735707900655e-07,
|
| 872 |
+
"loss": 0.0776,
|
| 873 |
+
"reward": 1.3395833685994147,
|
| 874 |
+
"reward_std": 0.4737738098949194,
|
| 875 |
+
"rewards/accuracy_reward": 0.4250000070780516,
|
| 876 |
+
"rewards/format_reward": 0.9145833484828472,
|
| 877 |
+
"step": 620
|
| 878 |
+
},
|
| 879 |
+
{
|
| 880 |
+
"clip_ratio": 0.0,
|
| 881 |
+
"completion_length": 245.11459074020385,
|
| 882 |
+
"epoch": 0.84,
|
| 883 |
+
"grad_norm": 0.4293162226676941,
|
| 884 |
+
"kl": 1.1108795166015626,
|
| 885 |
+
"learning_rate": 2.2792785576536108e-07,
|
| 886 |
+
"loss": 0.1537,
|
| 887 |
+
"reward": 1.24375003837049,
|
| 888 |
+
"reward_std": 0.520675316080451,
|
| 889 |
+
"rewards/accuracy_reward": 0.3729166738688946,
|
| 890 |
+
"rewards/format_reward": 0.8708333484828472,
|
| 891 |
+
"step": 630
|
| 892 |
+
},
|
| 893 |
+
{
|
| 894 |
+
"clip_ratio": 0.0,
|
| 895 |
+
"completion_length": 249.4729232788086,
|
| 896 |
+
"epoch": 0.8533333333333334,
|
| 897 |
+
"grad_norm": 0.17477993667125702,
|
| 898 |
+
"kl": 1.014031982421875,
|
| 899 |
+
"learning_rate": 1.9232337945485655e-07,
|
| 900 |
+
"loss": 0.1481,
|
| 901 |
+
"reward": 1.293750035017729,
|
| 902 |
+
"reward_std": 0.5492795780301094,
|
| 903 |
+
"rewards/accuracy_reward": 0.4104166742414236,
|
| 904 |
+
"rewards/format_reward": 0.8833333525806666,
|
| 905 |
+
"step": 640
|
| 906 |
+
},
|
| 907 |
+
{
|
| 908 |
+
"clip_ratio": 0.0,
|
| 909 |
+
"completion_length": 271.8937582015991,
|
| 910 |
+
"epoch": 0.8666666666666667,
|
| 911 |
+
"grad_norm": 0.683167040348053,
|
| 912 |
+
"kl": 1.2961456298828125,
|
| 913 |
+
"learning_rate": 1.5955103951488177e-07,
|
| 914 |
+
"loss": 0.1557,
|
| 915 |
+
"reward": 1.1854166965931654,
|
| 916 |
+
"reward_std": 0.5265001837164164,
|
| 917 |
+
"rewards/accuracy_reward": 0.33541667349636556,
|
| 918 |
+
"rewards/format_reward": 0.8500000169500709,
|
| 919 |
+
"step": 650
|
| 920 |
+
},
|
| 921 |
+
{
|
| 922 |
+
"clip_ratio": 0.0,
|
| 923 |
+
"completion_length": 238.02084150314332,
|
| 924 |
+
"epoch": 0.88,
|
| 925 |
+
"grad_norm": 0.47596192359924316,
|
| 926 |
+
"kl": 0.965118408203125,
|
| 927 |
+
"learning_rate": 1.2968181353609853e-07,
|
| 928 |
+
"loss": 0.1338,
|
| 929 |
+
"reward": 1.3020833618938923,
|
| 930 |
+
"reward_std": 0.49198094978928564,
|
| 931 |
+
"rewards/accuracy_reward": 0.40833334252238274,
|
| 932 |
+
"rewards/format_reward": 0.8937500178813934,
|
| 933 |
+
"step": 660
|
| 934 |
+
},
|
| 935 |
+
{
|
| 936 |
+
"clip_ratio": 0.0,
|
| 937 |
+
"completion_length": 221.03750729560852,
|
| 938 |
+
"epoch": 0.8933333333333333,
|
| 939 |
+
"grad_norm": 0.4685460031032562,
|
| 940 |
+
"kl": 0.8098968505859375,
|
| 941 |
+
"learning_rate": 1.0278039161078634e-07,
|
| 942 |
+
"loss": 0.1018,
|
| 943 |
+
"reward": 1.3375000290572643,
|
| 944 |
+
"reward_std": 0.4632135137915611,
|
| 945 |
+
"rewards/accuracy_reward": 0.43750000912696124,
|
| 946 |
+
"rewards/format_reward": 0.9000000119209289,
|
| 947 |
+
"step": 670
|
| 948 |
+
},
|
| 949 |
+
{
|
| 950 |
+
"clip_ratio": 0.0,
|
| 951 |
+
"completion_length": 253.50209112167357,
|
| 952 |
+
"epoch": 0.9066666666666666,
|
| 953 |
+
"grad_norm": 0.2506866753101349,
|
| 954 |
+
"kl": 0.906805419921875,
|
| 955 |
+
"learning_rate": 7.89050362285062e-08,
|
| 956 |
+
"loss": 0.1365,
|
| 957 |
+
"reward": 1.2375000305473804,
|
| 958 |
+
"reward_std": 0.517885773256421,
|
| 959 |
+
"rewards/accuracy_reward": 0.3645833428949118,
|
| 960 |
+
"rewards/format_reward": 0.8729166854172945,
|
| 961 |
+
"step": 680
|
| 962 |
+
},
|
| 963 |
+
{
|
| 964 |
+
"clip_ratio": 0.0,
|
| 965 |
+
"completion_length": 239.60625705718994,
|
| 966 |
+
"epoch": 0.92,
|
| 967 |
+
"grad_norm": 0.5413881540298462,
|
| 968 |
+
"kl": 0.835858154296875,
|
| 969 |
+
"learning_rate": 5.810745609252166e-08,
|
| 970 |
+
"loss": 0.1281,
|
| 971 |
+
"reward": 1.2187500409781933,
|
| 972 |
+
"reward_std": 0.5353617053478956,
|
| 973 |
+
"rewards/accuracy_reward": 0.3395833415910602,
|
| 974 |
+
"rewards/format_reward": 0.8791666828095913,
|
| 975 |
+
"step": 690
|
| 976 |
+
},
|
| 977 |
+
{
|
| 978 |
+
"clip_ratio": 0.0,
|
| 979 |
+
"completion_length": 232.96667356491088,
|
| 980 |
+
"epoch": 0.9333333333333333,
|
| 981 |
+
"grad_norm": 0.41816839575767517,
|
| 982 |
+
"kl": 1.4766021728515626,
|
| 983 |
+
"learning_rate": 4.0432694130264294e-08,
|
| 984 |
+
"loss": 0.1412,
|
| 985 |
+
"reward": 1.2375000312924385,
|
| 986 |
+
"reward_std": 0.5488180216401816,
|
| 987 |
+
"rewards/accuracy_reward": 0.37708334121853115,
|
| 988 |
+
"rewards/format_reward": 0.8604166824370623,
|
| 989 |
+
"step": 700
|
| 990 |
+
},
|
| 991 |
+
{
|
| 992 |
+
"clip_ratio": 0.0,
|
| 993 |
+
"completion_length": 278.4333411693573,
|
| 994 |
+
"epoch": 0.9466666666666667,
|
| 995 |
+
"grad_norm": 0.5456490516662598,
|
| 996 |
+
"kl": 1.7320938110351562,
|
| 997 |
+
"learning_rate": 2.5919029940380145e-08,
|
| 998 |
+
"loss": 0.2249,
|
| 999 |
+
"reward": 1.2062500290572644,
|
| 1000 |
+
"reward_std": 0.6055900201201438,
|
| 1001 |
+
"rewards/accuracy_reward": 0.3833333427086473,
|
| 1002 |
+
"rewards/format_reward": 0.8229166869074106,
|
| 1003 |
+
"step": 710
|
| 1004 |
+
},
|
| 1005 |
+
{
|
| 1006 |
+
"clip_ratio": 0.0,
|
| 1007 |
+
"completion_length": 239.62500748634338,
|
| 1008 |
+
"epoch": 0.96,
|
| 1009 |
+
"grad_norm": 0.32890596985816956,
|
| 1010 |
+
"kl": 1.458221435546875,
|
| 1011 |
+
"learning_rate": 1.4597896887644457e-08,
|
| 1012 |
+
"loss": 0.1827,
|
| 1013 |
+
"reward": 1.264583370089531,
|
| 1014 |
+
"reward_std": 0.5755864661186934,
|
| 1015 |
+
"rewards/accuracy_reward": 0.4187500111758709,
|
| 1016 |
+
"rewards/format_reward": 0.8458333492279053,
|
| 1017 |
+
"step": 720
|
| 1018 |
+
},
|
| 1019 |
+
{
|
| 1020 |
+
"clip_ratio": 0.0,
|
| 1021 |
+
"completion_length": 274.1791749954224,
|
| 1022 |
+
"epoch": 0.9733333333333334,
|
| 1023 |
+
"grad_norm": 0.3116457760334015,
|
| 1024 |
+
"kl": 1.3982940673828126,
|
| 1025 |
+
"learning_rate": 6.493814025293476e-09,
|
| 1026 |
+
"loss": 0.1776,
|
| 1027 |
+
"reward": 1.231250035017729,
|
| 1028 |
+
"reward_std": 0.5566708967089653,
|
| 1029 |
+
"rewards/accuracy_reward": 0.40000000949949027,
|
| 1030 |
+
"rewards/format_reward": 0.8312500137835741,
|
| 1031 |
+
"step": 730
|
| 1032 |
+
},
|
| 1033 |
+
{
|
| 1034 |
+
"clip_ratio": 0.0,
|
| 1035 |
+
"completion_length": 255.23750734329224,
|
| 1036 |
+
"epoch": 0.9866666666666667,
|
| 1037 |
+
"grad_norm": 0.4142087697982788,
|
| 1038 |
+
"kl": 1.2847900390625,
|
| 1039 |
+
"learning_rate": 1.624332992213151e-09,
|
| 1040 |
+
"loss": 0.1855,
|
| 1041 |
+
"reward": 1.2229166984558106,
|
| 1042 |
+
"reward_std": 0.5469876442104578,
|
| 1043 |
+
"rewards/accuracy_reward": 0.38333334159106014,
|
| 1044 |
+
"rewards/format_reward": 0.8395833514630795,
|
| 1045 |
+
"step": 740
|
| 1046 |
+
},
|
| 1047 |
+
{
|
| 1048 |
+
"clip_ratio": 0.0,
|
| 1049 |
+
"completion_length": 279.8500079154968,
|
| 1050 |
+
"epoch": 1.0,
|
| 1051 |
+
"grad_norm": 0.3987623155117035,
|
| 1052 |
+
"kl": 1.2904449462890626,
|
| 1053 |
+
"learning_rate": 0.0,
|
| 1054 |
+
"loss": 0.2137,
|
| 1055 |
+
"reward": 1.2583333723247052,
|
| 1056 |
+
"reward_std": 0.6197128046303988,
|
| 1057 |
+
"rewards/accuracy_reward": 0.4229166766628623,
|
| 1058 |
+
"rewards/format_reward": 0.8354166867211461,
|
| 1059 |
+
"step": 750
|
| 1060 |
+
},
|
| 1061 |
+
{
|
| 1062 |
+
"epoch": 1.0,
|
| 1063 |
+
"step": 750,
|
| 1064 |
+
"total_flos": 0.0,
|
| 1065 |
+
"train_loss": 0.1488674604743719,
|
| 1066 |
+
"train_runtime": 66920.1081,
|
| 1067 |
+
"train_samples_per_second": 0.09,
|
| 1068 |
+
"train_steps_per_second": 0.011
|
| 1069 |
+
}
|
| 1070 |
+
],
|
| 1071 |
+
"logging_steps": 10,
|
| 1072 |
+
"max_steps": 750,
|
| 1073 |
+
"num_input_tokens_seen": 0,
|
| 1074 |
+
"num_train_epochs": 1,
|
| 1075 |
+
"save_steps": 500,
|
| 1076 |
+
"stateful_callbacks": {
|
| 1077 |
+
"TrainerControl": {
|
| 1078 |
+
"args": {
|
| 1079 |
+
"should_epoch_stop": false,
|
| 1080 |
+
"should_evaluate": false,
|
| 1081 |
+
"should_log": false,
|
| 1082 |
+
"should_save": true,
|
| 1083 |
+
"should_training_stop": true
|
| 1084 |
+
},
|
| 1085 |
+
"attributes": {}
|
| 1086 |
+
}
|
| 1087 |
+
},
|
| 1088 |
+
"total_flos": 0.0,
|
| 1089 |
+
"train_batch_size": 2,
|
| 1090 |
+
"trial_name": null,
|
| 1091 |
+
"trial_params": null
|
| 1092 |
+
}
|
training_args.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:54c54c2d3936a06718bec7a05d94cbe407642258c6026f4827e40add0ee73b27
|
| 3 |
+
size 7800
|
vocab.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|