GavinChan1105 commited on
Commit
bb8822b
·
verified ·
1 Parent(s): 2894e11

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: Qwen/Qwen2.5-3B
3
+ datasets: xiaodongguaAIGC/X-R1-TAL-SCQ5K
4
+ library_name: transformers
5
+ tags:
6
+ - generated_from_trainer
7
+ - X-R1
8
+ licence: license
9
+ ---
10
+
11
+ # Model Card for None
12
+
13
+ This model is a fine-tuned version of [Qwen/Qwen2.5-3B](https://huggingface.co/Qwen/Qwen2.5-3B) on the [xiaodongguaAIGC/X-R1-TAL-SCQ5K](https://huggingface.co/datasets/xiaodongguaAIGC/X-R1-TAL-SCQ5K) dataset.
14
+ It has been trained using [TRL](https://github.com/huggingface/trl).
15
+
16
+ ## Quick start
17
+
18
+ ```python
19
+ from transformers import pipeline
20
+
21
+ question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
22
+ generator = pipeline("text-generation", model="None", device="cuda")
23
+ output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
24
+ print(output["generated_text"])
25
+ ```
26
+
27
+ ## Training procedure
28
+
29
+ [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/ccseu1991-southeast-university/ma-rlhf/runs/ry4wf65o)
30
+
31
+
32
+ This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
33
+
34
+ ### Framework versions
35
+
36
+ - TRL: 0.16.0.dev0
37
+ - Transformers: 4.48.2
38
+ - Pytorch: 2.5.1
39
+ - Datasets: 3.2.0
40
+ - Tokenizers: 0.21.4
41
+
42
+ ## Citations
43
+
44
+ Cite GRPO as:
45
+
46
+ ```bibtex
47
+ @article{zhihong2024deepseekmath,
48
+ title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
49
+ author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
50
+ year = 2024,
51
+ eprint = {arXiv:2402.03300},
52
+ }
53
+
54
+ ```
55
+
56
+ Cite TRL as:
57
+
58
+ ```bibtex
59
+ @misc{vonwerra2022trl,
60
+ title = {{TRL: Transformer Reinforcement Learning}},
61
+ author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
62
+ year = 2020,
63
+ journal = {GitHub repository},
64
+ publisher = {GitHub},
65
+ howpublished = {\url{https://github.com/huggingface/trl}}
66
+ }
67
+ ```
added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
all_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "total_flos": 0.0,
3
+ "train_loss": 0.1488674604743719,
4
+ "train_runtime": 66920.1081,
5
+ "train_samples": 6000,
6
+ "train_samples_per_second": 0.09,
7
+ "train_steps_per_second": 0.011
8
+ }
config.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "Qwen/Qwen2.5-3B",
3
+ "architectures": [
4
+ "Qwen2ForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 151643,
8
+ "eos_token_id": 151643,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 2048,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 11008,
13
+ "max_position_embeddings": 32768,
14
+ "max_window_layers": 36,
15
+ "model_type": "qwen2",
16
+ "num_attention_heads": 16,
17
+ "num_hidden_layers": 36,
18
+ "num_key_value_heads": 2,
19
+ "rms_norm_eps": 1e-06,
20
+ "rope_scaling": null,
21
+ "rope_theta": 1000000.0,
22
+ "sliding_window": null,
23
+ "tie_word_embeddings": true,
24
+ "torch_dtype": "bfloat16",
25
+ "transformers_version": "4.48.2",
26
+ "use_cache": true,
27
+ "use_mrope": false,
28
+ "use_sliding_window": false,
29
+ "vocab_size": 151936
30
+ }
generation_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "eos_token_id": 151643,
4
+ "max_new_tokens": 2048,
5
+ "transformers_version": "4.48.2"
6
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model-00001-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:89d6a29feda37586a5c4b5f90eb115b57ab03b127c85fcb0e14d8e2dcbe257bd
3
+ size 4957560304
model-00002-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:193f0a737265d1c651549942c373bb0cfbc630c56fcd35be42b382ce2ead4c83
3
+ size 1214366696
model.safetensors.index.json ADDED
@@ -0,0 +1,441 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 6171877376
4
+ },
5
+ "weight_map": {
6
+ "model.embed_tokens.weight": "model-00001-of-00002.safetensors",
7
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
8
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
9
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
10
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
11
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
12
+ "model.layers.0.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
13
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
14
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
15
+ "model.layers.0.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
16
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
17
+ "model.layers.0.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
18
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
19
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
20
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
21
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
22
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
23
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
24
+ "model.layers.1.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
25
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
26
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
27
+ "model.layers.1.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
28
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
29
+ "model.layers.1.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
30
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
31
+ "model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
32
+ "model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
33
+ "model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
34
+ "model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
35
+ "model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
36
+ "model.layers.10.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
37
+ "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
38
+ "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
39
+ "model.layers.10.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
40
+ "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
41
+ "model.layers.10.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
42
+ "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
43
+ "model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
44
+ "model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
45
+ "model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
46
+ "model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
47
+ "model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
48
+ "model.layers.11.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
49
+ "model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
50
+ "model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
51
+ "model.layers.11.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
52
+ "model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
53
+ "model.layers.11.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
54
+ "model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
55
+ "model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
56
+ "model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
57
+ "model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
58
+ "model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
59
+ "model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
60
+ "model.layers.12.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
61
+ "model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
62
+ "model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
63
+ "model.layers.12.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
64
+ "model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
65
+ "model.layers.12.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
66
+ "model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
67
+ "model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
68
+ "model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
69
+ "model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
70
+ "model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
71
+ "model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
72
+ "model.layers.13.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
73
+ "model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
74
+ "model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
75
+ "model.layers.13.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
76
+ "model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
77
+ "model.layers.13.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
78
+ "model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
79
+ "model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
80
+ "model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
81
+ "model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
82
+ "model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
83
+ "model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
84
+ "model.layers.14.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
85
+ "model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
86
+ "model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
87
+ "model.layers.14.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
88
+ "model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
89
+ "model.layers.14.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
90
+ "model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
91
+ "model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
92
+ "model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
93
+ "model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
94
+ "model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
95
+ "model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
96
+ "model.layers.15.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
97
+ "model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
98
+ "model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
99
+ "model.layers.15.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
100
+ "model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
101
+ "model.layers.15.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
102
+ "model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
103
+ "model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
104
+ "model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
105
+ "model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
106
+ "model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
107
+ "model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
108
+ "model.layers.16.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
109
+ "model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
110
+ "model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
111
+ "model.layers.16.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
112
+ "model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
113
+ "model.layers.16.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
114
+ "model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
115
+ "model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
116
+ "model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
117
+ "model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
118
+ "model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
119
+ "model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
120
+ "model.layers.17.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
121
+ "model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
122
+ "model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
123
+ "model.layers.17.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
124
+ "model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
125
+ "model.layers.17.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
126
+ "model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
127
+ "model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
128
+ "model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
129
+ "model.layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
130
+ "model.layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
131
+ "model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
132
+ "model.layers.18.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
133
+ "model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
134
+ "model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
135
+ "model.layers.18.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
136
+ "model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
137
+ "model.layers.18.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
138
+ "model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
139
+ "model.layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors",
140
+ "model.layers.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
141
+ "model.layers.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
142
+ "model.layers.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
143
+ "model.layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
144
+ "model.layers.19.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
145
+ "model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
146
+ "model.layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
147
+ "model.layers.19.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
148
+ "model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
149
+ "model.layers.19.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
150
+ "model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
151
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
152
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
153
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
154
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
155
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
156
+ "model.layers.2.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
157
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
158
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
159
+ "model.layers.2.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
160
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
161
+ "model.layers.2.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
162
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
163
+ "model.layers.20.input_layernorm.weight": "model-00001-of-00002.safetensors",
164
+ "model.layers.20.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
165
+ "model.layers.20.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
166
+ "model.layers.20.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
167
+ "model.layers.20.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
168
+ "model.layers.20.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
169
+ "model.layers.20.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
170
+ "model.layers.20.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
171
+ "model.layers.20.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
172
+ "model.layers.20.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
173
+ "model.layers.20.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
174
+ "model.layers.20.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
175
+ "model.layers.21.input_layernorm.weight": "model-00001-of-00002.safetensors",
176
+ "model.layers.21.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
177
+ "model.layers.21.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
178
+ "model.layers.21.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
179
+ "model.layers.21.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
180
+ "model.layers.21.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
181
+ "model.layers.21.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
182
+ "model.layers.21.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
183
+ "model.layers.21.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
184
+ "model.layers.21.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
185
+ "model.layers.21.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
186
+ "model.layers.21.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
187
+ "model.layers.22.input_layernorm.weight": "model-00001-of-00002.safetensors",
188
+ "model.layers.22.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
189
+ "model.layers.22.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
190
+ "model.layers.22.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
191
+ "model.layers.22.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
192
+ "model.layers.22.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
193
+ "model.layers.22.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
194
+ "model.layers.22.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
195
+ "model.layers.22.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
196
+ "model.layers.22.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
197
+ "model.layers.22.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
198
+ "model.layers.22.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
199
+ "model.layers.23.input_layernorm.weight": "model-00001-of-00002.safetensors",
200
+ "model.layers.23.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
201
+ "model.layers.23.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
202
+ "model.layers.23.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
203
+ "model.layers.23.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
204
+ "model.layers.23.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
205
+ "model.layers.23.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
206
+ "model.layers.23.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
207
+ "model.layers.23.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
208
+ "model.layers.23.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
209
+ "model.layers.23.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
210
+ "model.layers.23.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
211
+ "model.layers.24.input_layernorm.weight": "model-00001-of-00002.safetensors",
212
+ "model.layers.24.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
213
+ "model.layers.24.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
214
+ "model.layers.24.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
215
+ "model.layers.24.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
216
+ "model.layers.24.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
217
+ "model.layers.24.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
218
+ "model.layers.24.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
219
+ "model.layers.24.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
220
+ "model.layers.24.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
221
+ "model.layers.24.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
222
+ "model.layers.24.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
223
+ "model.layers.25.input_layernorm.weight": "model-00001-of-00002.safetensors",
224
+ "model.layers.25.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
225
+ "model.layers.25.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
226
+ "model.layers.25.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
227
+ "model.layers.25.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
228
+ "model.layers.25.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
229
+ "model.layers.25.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
230
+ "model.layers.25.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
231
+ "model.layers.25.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
232
+ "model.layers.25.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
233
+ "model.layers.25.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
234
+ "model.layers.25.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
235
+ "model.layers.26.input_layernorm.weight": "model-00001-of-00002.safetensors",
236
+ "model.layers.26.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
237
+ "model.layers.26.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
238
+ "model.layers.26.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
239
+ "model.layers.26.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
240
+ "model.layers.26.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
241
+ "model.layers.26.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
242
+ "model.layers.26.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
243
+ "model.layers.26.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
244
+ "model.layers.26.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
245
+ "model.layers.26.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
246
+ "model.layers.26.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
247
+ "model.layers.27.input_layernorm.weight": "model-00001-of-00002.safetensors",
248
+ "model.layers.27.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
249
+ "model.layers.27.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
250
+ "model.layers.27.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
251
+ "model.layers.27.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
252
+ "model.layers.27.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
253
+ "model.layers.27.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
254
+ "model.layers.27.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
255
+ "model.layers.27.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
256
+ "model.layers.27.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
257
+ "model.layers.27.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
258
+ "model.layers.27.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
259
+ "model.layers.28.input_layernorm.weight": "model-00002-of-00002.safetensors",
260
+ "model.layers.28.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
261
+ "model.layers.28.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
262
+ "model.layers.28.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
263
+ "model.layers.28.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
264
+ "model.layers.28.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
265
+ "model.layers.28.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
266
+ "model.layers.28.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
267
+ "model.layers.28.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
268
+ "model.layers.28.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
269
+ "model.layers.28.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
270
+ "model.layers.28.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
271
+ "model.layers.29.input_layernorm.weight": "model-00002-of-00002.safetensors",
272
+ "model.layers.29.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
273
+ "model.layers.29.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
274
+ "model.layers.29.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
275
+ "model.layers.29.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
276
+ "model.layers.29.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
277
+ "model.layers.29.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
278
+ "model.layers.29.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
279
+ "model.layers.29.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
280
+ "model.layers.29.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
281
+ "model.layers.29.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
282
+ "model.layers.29.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
283
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
284
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
285
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
286
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
287
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
288
+ "model.layers.3.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
289
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
290
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
291
+ "model.layers.3.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
292
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
293
+ "model.layers.3.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
294
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
295
+ "model.layers.30.input_layernorm.weight": "model-00002-of-00002.safetensors",
296
+ "model.layers.30.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
297
+ "model.layers.30.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
298
+ "model.layers.30.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
299
+ "model.layers.30.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
300
+ "model.layers.30.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
301
+ "model.layers.30.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
302
+ "model.layers.30.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
303
+ "model.layers.30.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
304
+ "model.layers.30.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
305
+ "model.layers.30.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
306
+ "model.layers.30.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
307
+ "model.layers.31.input_layernorm.weight": "model-00002-of-00002.safetensors",
308
+ "model.layers.31.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
309
+ "model.layers.31.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
310
+ "model.layers.31.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
311
+ "model.layers.31.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
312
+ "model.layers.31.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
313
+ "model.layers.31.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
314
+ "model.layers.31.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
315
+ "model.layers.31.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
316
+ "model.layers.31.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
317
+ "model.layers.31.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
318
+ "model.layers.31.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
319
+ "model.layers.32.input_layernorm.weight": "model-00002-of-00002.safetensors",
320
+ "model.layers.32.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
321
+ "model.layers.32.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
322
+ "model.layers.32.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
323
+ "model.layers.32.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
324
+ "model.layers.32.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
325
+ "model.layers.32.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
326
+ "model.layers.32.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
327
+ "model.layers.32.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
328
+ "model.layers.32.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
329
+ "model.layers.32.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
330
+ "model.layers.32.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
331
+ "model.layers.33.input_layernorm.weight": "model-00002-of-00002.safetensors",
332
+ "model.layers.33.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
333
+ "model.layers.33.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
334
+ "model.layers.33.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
335
+ "model.layers.33.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
336
+ "model.layers.33.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
337
+ "model.layers.33.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
338
+ "model.layers.33.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
339
+ "model.layers.33.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
340
+ "model.layers.33.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
341
+ "model.layers.33.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
342
+ "model.layers.33.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
343
+ "model.layers.34.input_layernorm.weight": "model-00002-of-00002.safetensors",
344
+ "model.layers.34.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
345
+ "model.layers.34.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
346
+ "model.layers.34.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
347
+ "model.layers.34.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
348
+ "model.layers.34.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
349
+ "model.layers.34.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
350
+ "model.layers.34.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
351
+ "model.layers.34.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
352
+ "model.layers.34.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
353
+ "model.layers.34.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
354
+ "model.layers.34.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
355
+ "model.layers.35.input_layernorm.weight": "model-00002-of-00002.safetensors",
356
+ "model.layers.35.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
357
+ "model.layers.35.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
358
+ "model.layers.35.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
359
+ "model.layers.35.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
360
+ "model.layers.35.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
361
+ "model.layers.35.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
362
+ "model.layers.35.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
363
+ "model.layers.35.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
364
+ "model.layers.35.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
365
+ "model.layers.35.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
366
+ "model.layers.35.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
367
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
368
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
369
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
370
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
371
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
372
+ "model.layers.4.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
373
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
374
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
375
+ "model.layers.4.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
376
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
377
+ "model.layers.4.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
378
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
379
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
380
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
381
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
382
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
383
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
384
+ "model.layers.5.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
385
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
386
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
387
+ "model.layers.5.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
388
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
389
+ "model.layers.5.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
390
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
391
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
392
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
393
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
394
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
395
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
396
+ "model.layers.6.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
397
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
398
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
399
+ "model.layers.6.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
400
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
401
+ "model.layers.6.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
402
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
403
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
404
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
405
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
406
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
407
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
408
+ "model.layers.7.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
409
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
410
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
411
+ "model.layers.7.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
412
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
413
+ "model.layers.7.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
414
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
415
+ "model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
416
+ "model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
417
+ "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
418
+ "model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
419
+ "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
420
+ "model.layers.8.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
421
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
422
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
423
+ "model.layers.8.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
424
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
425
+ "model.layers.8.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
426
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
427
+ "model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
428
+ "model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
429
+ "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
430
+ "model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
431
+ "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
432
+ "model.layers.9.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
433
+ "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
434
+ "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
435
+ "model.layers.9.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
436
+ "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
437
+ "model.layers.9.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
438
+ "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
439
+ "model.norm.weight": "model-00002-of-00002.safetensors"
440
+ }
441
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|endoftext|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5eee858c5123a4279c3e1f7b81247343f356ac767940b2692a928ad929543214
3
+ size 11422063
tokenizer_config.json ADDED
@@ -0,0 +1,209 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ }
181
+ },
182
+ "additional_special_tokens": [
183
+ "<|im_start|>",
184
+ "<|im_end|>",
185
+ "<|object_ref_start|>",
186
+ "<|object_ref_end|>",
187
+ "<|box_start|>",
188
+ "<|box_end|>",
189
+ "<|quad_start|>",
190
+ "<|quad_end|>",
191
+ "<|vision_start|>",
192
+ "<|vision_end|>",
193
+ "<|vision_pad|>",
194
+ "<|image_pad|>",
195
+ "<|video_pad|>"
196
+ ],
197
+ "bos_token": null,
198
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
199
+ "clean_up_tokenization_spaces": false,
200
+ "eos_token": "<|endoftext|>",
201
+ "errors": "replace",
202
+ "extra_special_tokens": {},
203
+ "model_max_length": 131072,
204
+ "pad_token": "<|endoftext|>",
205
+ "padding_side": "left",
206
+ "split_special_tokens": false,
207
+ "tokenizer_class": "Qwen2Tokenizer",
208
+ "unk_token": null
209
+ }
train_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "total_flos": 0.0,
3
+ "train_loss": 0.1488674604743719,
4
+ "train_runtime": 66920.1081,
5
+ "train_samples": 6000,
6
+ "train_samples_per_second": 0.09,
7
+ "train_steps_per_second": 0.011
8
+ }
trainer_state.json ADDED
@@ -0,0 +1,1092 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.0,
5
+ "eval_steps": 10,
6
+ "global_step": 750,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "clip_ratio": 0.0,
13
+ "completion_length": 298.3437587738037,
14
+ "epoch": 0.013333333333333334,
15
+ "grad_norm": 0.16560879349708557,
16
+ "kl": 0.00018159300088882446,
17
+ "learning_rate": 4e-07,
18
+ "loss": 0.0049,
19
+ "reward": 0.15208333674818278,
20
+ "reward_std": 0.2552751675248146,
21
+ "rewards/accuracy_reward": 0.06666666846722365,
22
+ "rewards/format_reward": 0.08541666883975267,
23
+ "step": 10
24
+ },
25
+ {
26
+ "clip_ratio": 0.0,
27
+ "completion_length": 314.44792423248293,
28
+ "epoch": 0.02666666666666667,
29
+ "grad_norm": 0.2575075328350067,
30
+ "kl": 0.0009123936295509338,
31
+ "learning_rate": 8e-07,
32
+ "loss": 0.0058,
33
+ "reward": 0.20625000558793544,
34
+ "reward_std": 0.2727560464292765,
35
+ "rewards/accuracy_reward": 0.06458333488553762,
36
+ "rewards/format_reward": 0.14166667070239783,
37
+ "step": 20
38
+ },
39
+ {
40
+ "clip_ratio": 0.0,
41
+ "completion_length": 252.6500078201294,
42
+ "epoch": 0.04,
43
+ "grad_norm": 0.46988776326179504,
44
+ "kl": 0.03377872705459595,
45
+ "learning_rate": 1.2000000000000002e-06,
46
+ "loss": 0.0205,
47
+ "reward": 0.5270833471789956,
48
+ "reward_std": 0.4601708807051182,
49
+ "rewards/accuracy_reward": 0.07916666902601718,
50
+ "rewards/format_reward": 0.44791667852550743,
51
+ "step": 30
52
+ },
53
+ {
54
+ "clip_ratio": 0.0,
55
+ "completion_length": 242.21250705718995,
56
+ "epoch": 0.05333333333333334,
57
+ "grad_norm": 0.19061416387557983,
58
+ "kl": 0.06111354827880859,
59
+ "learning_rate": 1.6e-06,
60
+ "loss": 0.048,
61
+ "reward": 0.8041666891425848,
62
+ "reward_std": 0.4267156172543764,
63
+ "rewards/accuracy_reward": 0.06250000167638063,
64
+ "rewards/format_reward": 0.7416666835546494,
65
+ "step": 40
66
+ },
67
+ {
68
+ "clip_ratio": 0.0,
69
+ "completion_length": 197.73125562667846,
70
+ "epoch": 0.06666666666666667,
71
+ "grad_norm": 0.2476302981376648,
72
+ "kl": 0.0408905029296875,
73
+ "learning_rate": 2e-06,
74
+ "loss": 0.021,
75
+ "reward": 0.8895833583548665,
76
+ "reward_std": 0.4103152878582478,
77
+ "rewards/accuracy_reward": 0.09375000242143869,
78
+ "rewards/format_reward": 0.7958333509042859,
79
+ "step": 50
80
+ },
81
+ {
82
+ "clip_ratio": 0.0,
83
+ "completion_length": 198.86250495910645,
84
+ "epoch": 0.08,
85
+ "grad_norm": 0.13683611154556274,
86
+ "kl": 0.0466217041015625,
87
+ "learning_rate": 2.4000000000000003e-06,
88
+ "loss": 0.0316,
89
+ "reward": 0.9916666936129331,
90
+ "reward_std": 0.36507078595459463,
91
+ "rewards/accuracy_reward": 0.11666666958481073,
92
+ "rewards/format_reward": 0.8750000182539225,
93
+ "step": 60
94
+ },
95
+ {
96
+ "clip_ratio": 0.0,
97
+ "completion_length": 225.4541726589203,
98
+ "epoch": 0.09333333333333334,
99
+ "grad_norm": 0.17669692635536194,
100
+ "kl": 0.06876106262207031,
101
+ "learning_rate": 2.8000000000000003e-06,
102
+ "loss": 0.0388,
103
+ "reward": 1.0520833637565374,
104
+ "reward_std": 0.4207858666777611,
105
+ "rewards/accuracy_reward": 0.19375000540167092,
106
+ "rewards/format_reward": 0.8583333497866988,
107
+ "step": 70
108
+ },
109
+ {
110
+ "clip_ratio": 0.0,
111
+ "completion_length": 194.30625553131102,
112
+ "epoch": 0.10666666666666667,
113
+ "grad_norm": 0.15089309215545654,
114
+ "kl": 0.08316802978515625,
115
+ "learning_rate": 2.9995938617691924e-06,
116
+ "loss": 0.03,
117
+ "reward": 1.1625000346451997,
118
+ "reward_std": 0.44051293805241587,
119
+ "rewards/accuracy_reward": 0.2520833399146795,
120
+ "rewards/format_reward": 0.91041667945683,
121
+ "step": 80
122
+ },
123
+ {
124
+ "clip_ratio": 0.0,
125
+ "completion_length": 202.31667232513428,
126
+ "epoch": 0.12,
127
+ "grad_norm": 0.2549769878387451,
128
+ "kl": 0.06892852783203125,
129
+ "learning_rate": 2.9963460753897363e-06,
130
+ "loss": 0.0229,
131
+ "reward": 1.1770833685994149,
132
+ "reward_std": 0.4563848368823528,
133
+ "rewards/accuracy_reward": 0.2687500063329935,
134
+ "rewards/format_reward": 0.9083333484828472,
135
+ "step": 90
136
+ },
137
+ {
138
+ "clip_ratio": 0.0,
139
+ "completion_length": 215.91458954811097,
140
+ "epoch": 0.13333333333333333,
141
+ "grad_norm": 3.687699556350708,
142
+ "kl": 0.1230712890625,
143
+ "learning_rate": 2.989857536612915e-06,
144
+ "loss": 0.0166,
145
+ "reward": 1.235416704416275,
146
+ "reward_std": 0.4576607421040535,
147
+ "rewards/accuracy_reward": 0.32083334121853113,
148
+ "rewards/format_reward": 0.914583346247673,
149
+ "step": 100
150
+ },
151
+ {
152
+ "clip_ratio": 0.0,
153
+ "completion_length": 231.20208988189697,
154
+ "epoch": 0.14666666666666667,
155
+ "grad_norm": 0.19754290580749512,
156
+ "kl": 0.09471588134765625,
157
+ "learning_rate": 2.980142298168869e-06,
158
+ "loss": 0.0774,
159
+ "reward": 1.204166702181101,
160
+ "reward_std": 0.5094456784427166,
161
+ "rewards/accuracy_reward": 0.329166673310101,
162
+ "rewards/format_reward": 0.8750000186264515,
163
+ "step": 110
164
+ },
165
+ {
166
+ "clip_ratio": 0.0,
167
+ "completion_length": 210.604172039032,
168
+ "epoch": 0.16,
169
+ "grad_norm": 0.9343002438545227,
170
+ "kl": 0.10347900390625,
171
+ "learning_rate": 2.9672214011007086e-06,
172
+ "loss": 0.0425,
173
+ "reward": 1.2375000335276127,
174
+ "reward_std": 0.5164696607738734,
175
+ "rewards/accuracy_reward": 0.35208334103226663,
176
+ "rewards/format_reward": 0.8854166835546493,
177
+ "step": 120
178
+ },
179
+ {
180
+ "clip_ratio": 0.0,
181
+ "completion_length": 254.06667470932007,
182
+ "epoch": 0.17333333333333334,
183
+ "grad_norm": 0.25169649720191956,
184
+ "kl": 0.148199462890625,
185
+ "learning_rate": 2.951122829194296e-06,
186
+ "loss": 0.0796,
187
+ "reward": 1.1187500342726708,
188
+ "reward_std": 0.5015288021415472,
189
+ "rewards/accuracy_reward": 0.26250000670552254,
190
+ "rewards/format_reward": 0.8562500193715096,
191
+ "step": 130
192
+ },
193
+ {
194
+ "clip_ratio": 0.0,
195
+ "completion_length": 233.81875615119935,
196
+ "epoch": 0.18666666666666668,
197
+ "grad_norm": 0.7912704348564148,
198
+ "kl": 2.357049560546875,
199
+ "learning_rate": 2.9318814483715983e-06,
200
+ "loss": 0.1295,
201
+ "reward": 0.9895833631977439,
202
+ "reward_std": 0.5210714556276799,
203
+ "rewards/accuracy_reward": 0.26250000577419996,
204
+ "rewards/format_reward": 0.7270833453163504,
205
+ "step": 140
206
+ },
207
+ {
208
+ "clip_ratio": 0.0,
209
+ "completion_length": 227.87708988189698,
210
+ "epoch": 0.2,
211
+ "grad_norm": 1.25613272190094,
212
+ "kl": 0.46229248046875,
213
+ "learning_rate": 2.9095389311788626e-06,
214
+ "loss": 0.0646,
215
+ "reward": 1.129166703671217,
216
+ "reward_std": 0.49879880994558334,
217
+ "rewards/accuracy_reward": 0.2687500067055225,
218
+ "rewards/format_reward": 0.8604166861623526,
219
+ "step": 150
220
+ },
221
+ {
222
+ "clip_ratio": 0.0,
223
+ "completion_length": 194.6770890235901,
224
+ "epoch": 0.21333333333333335,
225
+ "grad_norm": 0.4988195300102234,
226
+ "kl": 0.613861083984375,
227
+ "learning_rate": 2.8841436665331635e-06,
228
+ "loss": 0.0366,
229
+ "reward": 1.2395833693444729,
230
+ "reward_std": 0.48180873580276967,
231
+ "rewards/accuracy_reward": 0.31666667591780423,
232
+ "rewards/format_reward": 0.922916679084301,
233
+ "step": 160
234
+ },
235
+ {
236
+ "clip_ratio": 0.0,
237
+ "completion_length": 168.8062547683716,
238
+ "epoch": 0.22666666666666666,
239
+ "grad_norm": 0.9171387553215027,
240
+ "kl": 1.17796630859375,
241
+ "learning_rate": 2.855750654922781e-06,
242
+ "loss": 0.0156,
243
+ "reward": 1.1541667036712169,
244
+ "reward_std": 0.5033410575240851,
245
+ "rewards/accuracy_reward": 0.25416667219251393,
246
+ "rewards/format_reward": 0.9000000156462192,
247
+ "step": 170
248
+ },
249
+ {
250
+ "clip_ratio": 0.0,
251
+ "completion_length": 241.8708402633667,
252
+ "epoch": 0.24,
253
+ "grad_norm": 25.64914894104004,
254
+ "kl": 114.61384887695313,
255
+ "learning_rate": 2.8244213892883906e-06,
256
+ "loss": 2.7595,
257
+ "reward": 1.181250037252903,
258
+ "reward_std": 0.51867739520967,
259
+ "rewards/accuracy_reward": 0.31041667331010103,
260
+ "rewards/format_reward": 0.8708333529531955,
261
+ "step": 180
262
+ },
263
+ {
264
+ "clip_ratio": 0.0,
265
+ "completion_length": 314.0875092506409,
266
+ "epoch": 0.25333333333333335,
267
+ "grad_norm": 0.8180872797966003,
268
+ "kl": 2.062310791015625,
269
+ "learning_rate": 2.7902237218430485e-06,
270
+ "loss": 0.1151,
271
+ "reward": 1.1354166999459268,
272
+ "reward_std": 0.5186546068638563,
273
+ "rewards/accuracy_reward": 0.26458334010094403,
274
+ "rewards/format_reward": 0.8708333499729634,
275
+ "step": 190
276
+ },
277
+ {
278
+ "clip_ratio": 0.0,
279
+ "completion_length": 271.76875801086425,
280
+ "epoch": 0.26666666666666666,
281
+ "grad_norm": 2.5058634281158447,
282
+ "kl": 1.689434814453125,
283
+ "learning_rate": 2.753231717119405e-06,
284
+ "loss": 0.0826,
285
+ "reward": 1.1770833715796472,
286
+ "reward_std": 0.5468059632927179,
287
+ "rewards/accuracy_reward": 0.3104166744276881,
288
+ "rewards/format_reward": 0.8666666835546494,
289
+ "step": 200
290
+ },
291
+ {
292
+ "clip_ratio": 0.0,
293
+ "completion_length": 189.7958378791809,
294
+ "epoch": 0.28,
295
+ "grad_norm": 0.8333961367607117,
296
+ "kl": 2.188385009765625,
297
+ "learning_rate": 2.713525491562421e-06,
298
+ "loss": 0.159,
299
+ "reward": 1.1291666947305203,
300
+ "reward_std": 0.48742703087627887,
301
+ "rewards/accuracy_reward": 0.2375000048428774,
302
+ "rewards/format_reward": 0.8916666850447654,
303
+ "step": 210
304
+ },
305
+ {
306
+ "clip_ratio": 0.0,
307
+ "completion_length": 169.8958384513855,
308
+ "epoch": 0.29333333333333333,
309
+ "grad_norm": 0.48866531252861023,
310
+ "kl": 1.365594482421875,
311
+ "learning_rate": 2.671191040014989e-06,
312
+ "loss": 0.1571,
313
+ "reward": 1.214583370089531,
314
+ "reward_std": 0.45735101476311685,
315
+ "rewards/accuracy_reward": 0.2812500067055225,
316
+ "rewards/format_reward": 0.9333333462476731,
317
+ "step": 220
318
+ },
319
+ {
320
+ "clip_ratio": 0.0,
321
+ "completion_length": 210.16042280197144,
322
+ "epoch": 0.30666666666666664,
323
+ "grad_norm": 0.4208928346633911,
324
+ "kl": 1.861163330078125,
325
+ "learning_rate": 2.626320049472249e-06,
326
+ "loss": 0.2113,
327
+ "reward": 1.1687500353902578,
328
+ "reward_std": 0.48322329856455326,
329
+ "rewards/accuracy_reward": 0.3020833406597376,
330
+ "rewards/format_reward": 0.866666679084301,
331
+ "step": 230
332
+ },
333
+ {
334
+ "clip_ratio": 0.0,
335
+ "completion_length": 213.62292337417603,
336
+ "epoch": 0.32,
337
+ "grad_norm": 0.9921014308929443,
338
+ "kl": 5.52261962890625,
339
+ "learning_rate": 2.5790097005079765e-06,
340
+ "loss": 0.4186,
341
+ "reward": 1.1104166995733977,
342
+ "reward_std": 0.5192686680704355,
343
+ "rewards/accuracy_reward": 0.26250000651925803,
344
+ "rewards/format_reward": 0.8479166831821203,
345
+ "step": 240
346
+ },
347
+ {
348
+ "clip_ratio": 0.0,
349
+ "completion_length": 173.20625500679017,
350
+ "epoch": 0.3333333333333333,
351
+ "grad_norm": 0.5788355469703674,
352
+ "kl": 0.586700439453125,
353
+ "learning_rate": 2.529362456803101e-06,
354
+ "loss": 0.0873,
355
+ "reward": 1.2354166999459266,
356
+ "reward_std": 0.5144322618842125,
357
+ "rewards/accuracy_reward": 0.32708334140479567,
358
+ "rewards/format_reward": 0.9083333492279053,
359
+ "step": 250
360
+ },
361
+ {
362
+ "clip_ratio": 0.0,
363
+ "completion_length": 170.66458702087402,
364
+ "epoch": 0.3466666666666667,
365
+ "grad_norm": 1.29031503200531,
366
+ "kl": 3.8255126953125,
367
+ "learning_rate": 2.477485843232183e-06,
368
+ "loss": 0.2837,
369
+ "reward": 1.2604167006909848,
370
+ "reward_std": 0.5114245742559433,
371
+ "rewards/accuracy_reward": 0.3416666738688946,
372
+ "rewards/format_reward": 0.918750012665987,
373
+ "step": 260
374
+ },
375
+ {
376
+ "clip_ratio": 0.0,
377
+ "completion_length": 167.50208835601808,
378
+ "epoch": 0.36,
379
+ "grad_norm": 0.6127444505691528,
380
+ "kl": 0.5264404296875,
381
+ "learning_rate": 2.4234922129884873e-06,
382
+ "loss": 0.0213,
383
+ "reward": 1.3562500387430192,
384
+ "reward_std": 0.42282451651990416,
385
+ "rewards/accuracy_reward": 0.38958334233611824,
386
+ "rewards/format_reward": 0.9666666738688946,
387
+ "step": 270
388
+ },
389
+ {
390
+ "clip_ratio": 0.0,
391
+ "completion_length": 177.09583835601808,
392
+ "epoch": 0.37333333333333335,
393
+ "grad_norm": 0.6640939712524414,
394
+ "kl": 1.479010009765625,
395
+ "learning_rate": 2.36749850425198e-06,
396
+ "loss": 0.1688,
397
+ "reward": 1.250000035762787,
398
+ "reward_std": 0.4655508127063513,
399
+ "rewards/accuracy_reward": 0.3479166755452752,
400
+ "rewards/format_reward": 0.9020833499729634,
401
+ "step": 280
402
+ },
403
+ {
404
+ "clip_ratio": 0.0,
405
+ "completion_length": 198.85000591278077,
406
+ "epoch": 0.38666666666666666,
407
+ "grad_norm": 0.14313329756259918,
408
+ "kl": 1.668316650390625,
409
+ "learning_rate": 2.3096259869272697e-06,
410
+ "loss": 0.1292,
411
+ "reward": 1.289583370834589,
412
+ "reward_std": 0.47122009098529816,
413
+ "rewards/accuracy_reward": 0.3645833419635892,
414
+ "rewards/format_reward": 0.9250000134110451,
415
+ "step": 290
416
+ },
417
+ {
418
+ "clip_ratio": 0.0,
419
+ "completion_length": 230.99375743865966,
420
+ "epoch": 0.4,
421
+ "grad_norm": 0.10921728610992432,
422
+ "kl": 0.85283203125,
423
+ "learning_rate": 2.25e-06,
424
+ "loss": 0.0644,
425
+ "reward": 1.3041667066514493,
426
+ "reward_std": 0.4090763859450817,
427
+ "rewards/accuracy_reward": 0.37500000894069674,
428
+ "rewards/format_reward": 0.9291666768491268,
429
+ "step": 300
430
+ },
431
+ {
432
+ "clip_ratio": 0.0,
433
+ "completion_length": 270.9208402633667,
434
+ "epoch": 0.41333333333333333,
435
+ "grad_norm": 1.005725383758545,
436
+ "kl": 0.2567535400390625,
437
+ "learning_rate": 2.1887496800805174e-06,
438
+ "loss": 0.035,
439
+ "reward": 1.333333370089531,
440
+ "reward_std": 0.46985283866524696,
441
+ "rewards/accuracy_reward": 0.3937500087544322,
442
+ "rewards/format_reward": 0.939583346992731,
443
+ "step": 310
444
+ },
445
+ {
446
+ "clip_ratio": 0.0,
447
+ "completion_length": 238.92500734329224,
448
+ "epoch": 0.4266666666666667,
449
+ "grad_norm": 1.076439380645752,
450
+ "kl": 1.3035552978515625,
451
+ "learning_rate": 2.126007681722727e-06,
452
+ "loss": 0.1024,
453
+ "reward": 1.2500000342726707,
454
+ "reward_std": 0.48043784201145173,
455
+ "rewards/accuracy_reward": 0.35625000931322576,
456
+ "rewards/format_reward": 0.8937500141561031,
457
+ "step": 320
458
+ },
459
+ {
460
+ "clip_ratio": 0.0,
461
+ "completion_length": 414.82501125335693,
462
+ "epoch": 0.44,
463
+ "grad_norm": 0.6154415011405945,
464
+ "kl": 4.590509033203125,
465
+ "learning_rate": 2.061909890123868e-06,
466
+ "loss": 0.2873,
467
+ "reward": 0.777083358168602,
468
+ "reward_std": 0.4854964125901461,
469
+ "rewards/accuracy_reward": 0.22083333935588598,
470
+ "rewards/format_reward": 0.5562500126659871,
471
+ "step": 330
472
+ },
473
+ {
474
+ "clip_ratio": 0.0,
475
+ "completion_length": 237.14375581741334,
476
+ "epoch": 0.4533333333333333,
477
+ "grad_norm": 0.4070974886417389,
478
+ "kl": 0.4917999267578125,
479
+ "learning_rate": 1.9965951268274372e-06,
480
+ "loss": 0.0908,
481
+ "reward": 1.347916703671217,
482
+ "reward_std": 0.5186698414385319,
483
+ "rewards/accuracy_reward": 0.4395833432674408,
484
+ "rewards/format_reward": 0.9083333507180213,
485
+ "step": 340
486
+ },
487
+ {
488
+ "clip_ratio": 0.0,
489
+ "completion_length": 211.02292304039003,
490
+ "epoch": 0.4666666666666667,
491
+ "grad_norm": 0.7467241883277893,
492
+ "kl": 1.289691162109375,
493
+ "learning_rate": 1.9302048490666355e-06,
494
+ "loss": 0.1216,
495
+ "reward": 1.3833333637565375,
496
+ "reward_std": 0.4452923540025949,
497
+ "rewards/accuracy_reward": 0.4604166755452752,
498
+ "rewards/format_reward": 0.9229166809469461,
499
+ "step": 350
500
+ },
501
+ {
502
+ "clip_ratio": 0.0,
503
+ "completion_length": 207.78333921432494,
504
+ "epoch": 0.48,
505
+ "grad_norm": 0.5213920474052429,
506
+ "kl": 0.3299652099609375,
507
+ "learning_rate": 1.8628828433995015e-06,
508
+ "loss": 0.0802,
509
+ "reward": 1.354166705906391,
510
+ "reward_std": 0.43137194626033304,
511
+ "rewards/accuracy_reward": 0.4145833427086473,
512
+ "rewards/format_reward": 0.9395833432674408,
513
+ "step": 360
514
+ },
515
+ {
516
+ "clip_ratio": 0.0,
517
+ "completion_length": 214.07083945274354,
518
+ "epoch": 0.49333333333333335,
519
+ "grad_norm": 11.964993476867676,
520
+ "kl": 1.5061492919921875,
521
+ "learning_rate": 1.7947749142992453e-06,
522
+ "loss": 0.1615,
523
+ "reward": 1.2437500320374966,
524
+ "reward_std": 0.4532905198633671,
525
+ "rewards/accuracy_reward": 0.3145833395421505,
526
+ "rewards/format_reward": 0.9291666775941849,
527
+ "step": 370
528
+ },
529
+ {
530
+ "clip_ratio": 0.0,
531
+ "completion_length": 231.10625724792482,
532
+ "epoch": 0.5066666666666667,
533
+ "grad_norm": 0.7543414235115051,
534
+ "kl": 0.93128662109375,
535
+ "learning_rate": 1.7260285683742248e-06,
536
+ "loss": 0.1419,
537
+ "reward": 1.3000000320374965,
538
+ "reward_std": 0.5549088928848505,
539
+ "rewards/accuracy_reward": 0.4020833412185311,
540
+ "rewards/format_reward": 0.8979166842997074,
541
+ "step": 380
542
+ },
543
+ {
544
+ "clip_ratio": 0.0,
545
+ "completion_length": 234.94167280197144,
546
+ "epoch": 0.52,
547
+ "grad_norm": 1.8742121458053589,
548
+ "kl": 37.191220092773435,
549
+ "learning_rate": 1.6567926949014804e-06,
550
+ "loss": 0.5318,
551
+ "reward": 1.3187500394880771,
552
+ "reward_std": 0.5167587421834469,
553
+ "rewards/accuracy_reward": 0.40833334214985373,
554
+ "rewards/format_reward": 0.9104166820645332,
555
+ "step": 390
556
+ },
557
+ {
558
+ "clip_ratio": 0.0,
559
+ "completion_length": 188.943754863739,
560
+ "epoch": 0.5333333333333333,
561
+ "grad_norm": 0.14478746056556702,
562
+ "kl": 0.573187255859375,
563
+ "learning_rate": 1.5872172433657137e-06,
564
+ "loss": 0.0723,
565
+ "reward": 1.3020833745598792,
566
+ "reward_std": 0.4792703174054623,
567
+ "rewards/accuracy_reward": 0.3645833421498537,
568
+ "rewards/format_reward": 0.9375000111758709,
569
+ "step": 400
570
+ },
571
+ {
572
+ "clip_ratio": 0.0,
573
+ "completion_length": 178.75833768844603,
574
+ "epoch": 0.5466666666666666,
575
+ "grad_norm": 1.8087667226791382,
576
+ "kl": 0.8369659423828125,
577
+ "learning_rate": 1.5174528987020958e-06,
578
+ "loss": 0.0923,
579
+ "reward": 1.3125000409781933,
580
+ "reward_std": 0.48596611246466637,
581
+ "rewards/accuracy_reward": 0.39166667591780424,
582
+ "rewards/format_reward": 0.9208333469927311,
583
+ "step": 410
584
+ },
585
+ {
586
+ "clip_ratio": 0.0,
587
+ "completion_length": 256.539590215683,
588
+ "epoch": 0.56,
589
+ "grad_norm": 0.5763727426528931,
590
+ "kl": 2.3948883056640624,
591
+ "learning_rate": 1.4476507549462489e-06,
592
+ "loss": 0.2606,
593
+ "reward": 1.1541667029261589,
594
+ "reward_std": 0.6029179282486439,
595
+ "rewards/accuracy_reward": 0.35000000819563865,
596
+ "rewards/format_reward": 0.8041666833683848,
597
+ "step": 420
598
+ },
599
+ {
600
+ "clip_ratio": 0.0,
601
+ "completion_length": 163.55833940505983,
602
+ "epoch": 0.5733333333333334,
603
+ "grad_norm": 0.23491673171520233,
604
+ "kl": 0.215203857421875,
605
+ "learning_rate": 1.3779619879982127e-06,
606
+ "loss": 0.023,
607
+ "reward": 1.420833373069763,
608
+ "reward_std": 0.41848115585744383,
609
+ "rewards/accuracy_reward": 0.4520833443850279,
610
+ "rewards/format_reward": 0.9687500074505806,
611
+ "step": 430
612
+ },
613
+ {
614
+ "clip_ratio": 0.0,
615
+ "completion_length": 183.7666721343994,
616
+ "epoch": 0.5866666666666667,
617
+ "grad_norm": 0.1774040013551712,
618
+ "kl": 0.300738525390625,
619
+ "learning_rate": 1.308537528209108e-06,
620
+ "loss": 0.0643,
621
+ "reward": 1.4270833656191826,
622
+ "reward_std": 0.4158630233258009,
623
+ "rewards/accuracy_reward": 0.46666667573153975,
624
+ "rewards/format_reward": 0.9604166753590107,
625
+ "step": 440
626
+ },
627
+ {
628
+ "clip_ratio": 0.0,
629
+ "completion_length": 212.7937566280365,
630
+ "epoch": 0.6,
631
+ "grad_norm": 0.20609110593795776,
632
+ "kl": 0.5560638427734375,
633
+ "learning_rate": 1.2395277334996047e-06,
634
+ "loss": 0.0963,
635
+ "reward": 1.3229166999459268,
636
+ "reward_std": 0.4623309187591076,
637
+ "rewards/accuracy_reward": 0.3937500096857548,
638
+ "rewards/format_reward": 0.9291666783392429,
639
+ "step": 450
640
+ },
641
+ {
642
+ "clip_ratio": 0.0,
643
+ "completion_length": 189.80208778381348,
644
+ "epoch": 0.6133333333333333,
645
+ "grad_norm": 0.49082836508750916,
646
+ "kl": 0.7411895751953125,
647
+ "learning_rate": 1.1710820637181448e-06,
648
+ "loss": 0.0805,
649
+ "reward": 1.320833370834589,
650
+ "reward_std": 0.4459747776389122,
651
+ "rewards/accuracy_reward": 0.37916667480021715,
652
+ "rewards/format_reward": 0.9416666768491269,
653
+ "step": 460
654
+ },
655
+ {
656
+ "clip_ratio": 0.0,
657
+ "completion_length": 194.38542304039,
658
+ "epoch": 0.6266666666666667,
659
+ "grad_norm": 0.48382291197776794,
660
+ "kl": 0.4151397705078125,
661
+ "learning_rate": 1.103348756944197e-06,
662
+ "loss": 0.0534,
663
+ "reward": 1.3812500394880771,
664
+ "reward_std": 0.480151966586709,
665
+ "rewards/accuracy_reward": 0.4250000108033419,
666
+ "rewards/format_reward": 0.9562500081956387,
667
+ "step": 470
668
+ },
669
+ {
670
+ "clip_ratio": 0.0,
671
+ "completion_length": 220.32292351722717,
672
+ "epoch": 0.64,
673
+ "grad_norm": 0.2328379899263382,
674
+ "kl": 0.377593994140625,
675
+ "learning_rate": 1.036474508437579e-06,
676
+ "loss": 0.0734,
677
+ "reward": 1.318750038743019,
678
+ "reward_std": 0.47938378117978575,
679
+ "rewards/accuracy_reward": 0.37708334289491174,
680
+ "rewards/format_reward": 0.9416666783392429,
681
+ "step": 480
682
+ },
683
+ {
684
+ "clip_ratio": 0.0,
685
+ "completion_length": 213.46458911895752,
686
+ "epoch": 0.6533333333333333,
687
+ "grad_norm": 0.6423675417900085,
688
+ "kl": 0.6955718994140625,
689
+ "learning_rate": 9.70604152929197e-07,
690
+ "loss": 0.1096,
691
+ "reward": 1.3416667044162751,
692
+ "reward_std": 0.46137820817530156,
693
+ "rewards/accuracy_reward": 0.4145833419635892,
694
+ "rewards/format_reward": 0.9270833462476731,
695
+ "step": 490
696
+ },
697
+ {
698
+ "clip_ratio": 0.0,
699
+ "completion_length": 214.08125677108765,
700
+ "epoch": 0.6666666666666666,
701
+ "grad_norm": 0.14841440320014954,
702
+ "kl": 0.7181640625,
703
+ "learning_rate": 9.058803509412648e-07,
704
+ "loss": 0.0987,
705
+ "reward": 1.397916704416275,
706
+ "reward_std": 0.44944200329482553,
707
+ "rewards/accuracy_reward": 0.46041667945683,
708
+ "rewards/format_reward": 0.9375000111758709,
709
+ "step": 500
710
+ },
711
+ {
712
+ "clip_ratio": 0.0,
713
+ "completion_length": 226.89792413711547,
714
+ "epoch": 0.68,
715
+ "grad_norm": 0.20204541087150574,
716
+ "kl": 0.37396240234375,
717
+ "learning_rate": 8.424432798163837e-07,
718
+ "loss": 0.075,
719
+ "reward": 1.4020833641290664,
720
+ "reward_std": 0.3638565935194492,
721
+ "rewards/accuracy_reward": 0.45000000968575476,
722
+ "rewards/format_reward": 0.9520833425223827,
723
+ "step": 510
724
+ },
725
+ {
726
+ "clip_ratio": 0.0,
727
+ "completion_length": 227.1395909309387,
728
+ "epoch": 0.6933333333333334,
729
+ "grad_norm": 0.170625239610672,
730
+ "kl": 0.7568450927734375,
731
+ "learning_rate": 7.804303301246311e-07,
732
+ "loss": 0.0984,
733
+ "reward": 1.331250037252903,
734
+ "reward_std": 0.48546464554965496,
735
+ "rewards/accuracy_reward": 0.40000001061707735,
736
+ "rewards/format_reward": 0.9312500089406968,
737
+ "step": 520
738
+ },
739
+ {
740
+ "clip_ratio": 0.0,
741
+ "completion_length": 222.33542160987855,
742
+ "epoch": 0.7066666666666667,
743
+ "grad_norm": 0.35064828395843506,
744
+ "kl": 0.613885498046875,
745
+ "learning_rate": 7.19975808106177e-07,
746
+ "loss": 0.0488,
747
+ "reward": 1.3625000312924385,
748
+ "reward_std": 0.44792898930609226,
749
+ "rewards/accuracy_reward": 0.4104166755452752,
750
+ "rewards/format_reward": 0.9520833417773247,
751
+ "step": 530
752
+ },
753
+ {
754
+ "clip_ratio": 0.0,
755
+ "completion_length": 237.87292375564576,
756
+ "epoch": 0.72,
757
+ "grad_norm": 0.3742374777793884,
758
+ "kl": 0.584375,
759
+ "learning_rate": 6.6121064479388e-07,
760
+ "loss": 0.0612,
761
+ "reward": 1.4020833656191827,
762
+ "reward_std": 0.4303410712629557,
763
+ "rewards/accuracy_reward": 0.46041667759418486,
764
+ "rewards/format_reward": 0.9416666768491269,
765
+ "step": 540
766
+ },
767
+ {
768
+ "clip_ratio": 0.0,
769
+ "completion_length": 244.73542499542236,
770
+ "epoch": 0.7333333333333333,
771
+ "grad_norm": 0.346811980009079,
772
+ "kl": 0.83583984375,
773
+ "learning_rate": 6.04262112445821e-07,
774
+ "loss": 0.1029,
775
+ "reward": 1.293750037997961,
776
+ "reward_std": 0.48419367931783197,
777
+ "rewards/accuracy_reward": 0.3791666770353913,
778
+ "rewards/format_reward": 0.9145833477377892,
779
+ "step": 550
780
+ },
781
+ {
782
+ "clip_ratio": 0.0,
783
+ "completion_length": 268.9645917892456,
784
+ "epoch": 0.7466666666666667,
785
+ "grad_norm": 0.14408645033836365,
786
+ "kl": 0.513336181640625,
787
+ "learning_rate": 5.492535489019345e-07,
788
+ "loss": 0.084,
789
+ "reward": 1.2875000312924385,
790
+ "reward_std": 0.48581976890563966,
791
+ "rewards/accuracy_reward": 0.3770833395421505,
792
+ "rewards/format_reward": 0.9104166757315397,
793
+ "step": 560
794
+ },
795
+ {
796
+ "clip_ratio": 0.0,
797
+ "completion_length": 241.53333921432494,
798
+ "epoch": 0.76,
799
+ "grad_norm": 1.40211021900177,
800
+ "kl": 0.8751678466796875,
801
+ "learning_rate": 4.963040904617131e-07,
802
+ "loss": 0.1203,
803
+ "reward": 1.3145833693444728,
804
+ "reward_std": 0.49484665393829347,
805
+ "rewards/accuracy_reward": 0.4145833423361182,
806
+ "rewards/format_reward": 0.9000000134110451,
807
+ "step": 570
808
+ },
809
+ {
810
+ "clip_ratio": 0.0,
811
+ "completion_length": 252.40000743865966,
812
+ "epoch": 0.7733333333333333,
813
+ "grad_norm": 0.4801377058029175,
814
+ "kl": 1.2982696533203124,
815
+ "learning_rate": 4.4552841386150737e-07,
816
+ "loss": 0.1253,
817
+ "reward": 1.2708333659917117,
818
+ "reward_std": 0.5930769924074412,
819
+ "rewards/accuracy_reward": 0.43541667610406876,
820
+ "rewards/format_reward": 0.8354166846722364,
821
+ "step": 580
822
+ },
823
+ {
824
+ "clip_ratio": 0.0,
825
+ "completion_length": 259.3583409309387,
826
+ "epoch": 0.7866666666666666,
827
+ "grad_norm": 1.0408235788345337,
828
+ "kl": 1.4053619384765625,
829
+ "learning_rate": 3.9703648791025716e-07,
830
+ "loss": 0.183,
831
+ "reward": 1.1916666943579912,
832
+ "reward_std": 0.6191505286842585,
833
+ "rewards/accuracy_reward": 0.3854166746139526,
834
+ "rewards/format_reward": 0.8062500186264515,
835
+ "step": 590
836
+ },
837
+ {
838
+ "clip_ratio": 0.0,
839
+ "completion_length": 243.28750715255737,
840
+ "epoch": 0.8,
841
+ "grad_norm": 0.2709506154060364,
842
+ "kl": 0.96761474609375,
843
+ "learning_rate": 3.5093333532153313e-07,
844
+ "loss": 0.1034,
845
+ "reward": 1.316666693240404,
846
+ "reward_std": 0.46122562885284424,
847
+ "rewards/accuracy_reward": 0.4354166748002172,
848
+ "rewards/format_reward": 0.8812500096857547,
849
+ "step": 600
850
+ },
851
+ {
852
+ "clip_ratio": 0.0,
853
+ "completion_length": 218.83542261123657,
854
+ "epoch": 0.8133333333333334,
855
+ "grad_norm": 0.19969280064105988,
856
+ "kl": 0.4908477783203125,
857
+ "learning_rate": 3.073188052577282e-07,
858
+ "loss": 0.0814,
859
+ "reward": 1.3458333656191825,
860
+ "reward_std": 0.4190520565956831,
861
+ "rewards/accuracy_reward": 0.4041666744276881,
862
+ "rewards/format_reward": 0.9416666775941849,
863
+ "step": 610
864
+ },
865
+ {
866
+ "clip_ratio": 0.0,
867
+ "completion_length": 216.3875057220459,
868
+ "epoch": 0.8266666666666667,
869
+ "grad_norm": 0.23758280277252197,
870
+ "kl": 0.64254150390625,
871
+ "learning_rate": 2.6628735707900655e-07,
872
+ "loss": 0.0776,
873
+ "reward": 1.3395833685994147,
874
+ "reward_std": 0.4737738098949194,
875
+ "rewards/accuracy_reward": 0.4250000070780516,
876
+ "rewards/format_reward": 0.9145833484828472,
877
+ "step": 620
878
+ },
879
+ {
880
+ "clip_ratio": 0.0,
881
+ "completion_length": 245.11459074020385,
882
+ "epoch": 0.84,
883
+ "grad_norm": 0.4293162226676941,
884
+ "kl": 1.1108795166015626,
885
+ "learning_rate": 2.2792785576536108e-07,
886
+ "loss": 0.1537,
887
+ "reward": 1.24375003837049,
888
+ "reward_std": 0.520675316080451,
889
+ "rewards/accuracy_reward": 0.3729166738688946,
890
+ "rewards/format_reward": 0.8708333484828472,
891
+ "step": 630
892
+ },
893
+ {
894
+ "clip_ratio": 0.0,
895
+ "completion_length": 249.4729232788086,
896
+ "epoch": 0.8533333333333334,
897
+ "grad_norm": 0.17477993667125702,
898
+ "kl": 1.014031982421875,
899
+ "learning_rate": 1.9232337945485655e-07,
900
+ "loss": 0.1481,
901
+ "reward": 1.293750035017729,
902
+ "reward_std": 0.5492795780301094,
903
+ "rewards/accuracy_reward": 0.4104166742414236,
904
+ "rewards/format_reward": 0.8833333525806666,
905
+ "step": 640
906
+ },
907
+ {
908
+ "clip_ratio": 0.0,
909
+ "completion_length": 271.8937582015991,
910
+ "epoch": 0.8666666666666667,
911
+ "grad_norm": 0.683167040348053,
912
+ "kl": 1.2961456298828125,
913
+ "learning_rate": 1.5955103951488177e-07,
914
+ "loss": 0.1557,
915
+ "reward": 1.1854166965931654,
916
+ "reward_std": 0.5265001837164164,
917
+ "rewards/accuracy_reward": 0.33541667349636556,
918
+ "rewards/format_reward": 0.8500000169500709,
919
+ "step": 650
920
+ },
921
+ {
922
+ "clip_ratio": 0.0,
923
+ "completion_length": 238.02084150314332,
924
+ "epoch": 0.88,
925
+ "grad_norm": 0.47596192359924316,
926
+ "kl": 0.965118408203125,
927
+ "learning_rate": 1.2968181353609853e-07,
928
+ "loss": 0.1338,
929
+ "reward": 1.3020833618938923,
930
+ "reward_std": 0.49198094978928564,
931
+ "rewards/accuracy_reward": 0.40833334252238274,
932
+ "rewards/format_reward": 0.8937500178813934,
933
+ "step": 660
934
+ },
935
+ {
936
+ "clip_ratio": 0.0,
937
+ "completion_length": 221.03750729560852,
938
+ "epoch": 0.8933333333333333,
939
+ "grad_norm": 0.4685460031032562,
940
+ "kl": 0.8098968505859375,
941
+ "learning_rate": 1.0278039161078634e-07,
942
+ "loss": 0.1018,
943
+ "reward": 1.3375000290572643,
944
+ "reward_std": 0.4632135137915611,
945
+ "rewards/accuracy_reward": 0.43750000912696124,
946
+ "rewards/format_reward": 0.9000000119209289,
947
+ "step": 670
948
+ },
949
+ {
950
+ "clip_ratio": 0.0,
951
+ "completion_length": 253.50209112167357,
952
+ "epoch": 0.9066666666666666,
953
+ "grad_norm": 0.2506866753101349,
954
+ "kl": 0.906805419921875,
955
+ "learning_rate": 7.89050362285062e-08,
956
+ "loss": 0.1365,
957
+ "reward": 1.2375000305473804,
958
+ "reward_std": 0.517885773256421,
959
+ "rewards/accuracy_reward": 0.3645833428949118,
960
+ "rewards/format_reward": 0.8729166854172945,
961
+ "step": 680
962
+ },
963
+ {
964
+ "clip_ratio": 0.0,
965
+ "completion_length": 239.60625705718994,
966
+ "epoch": 0.92,
967
+ "grad_norm": 0.5413881540298462,
968
+ "kl": 0.835858154296875,
969
+ "learning_rate": 5.810745609252166e-08,
970
+ "loss": 0.1281,
971
+ "reward": 1.2187500409781933,
972
+ "reward_std": 0.5353617053478956,
973
+ "rewards/accuracy_reward": 0.3395833415910602,
974
+ "rewards/format_reward": 0.8791666828095913,
975
+ "step": 690
976
+ },
977
+ {
978
+ "clip_ratio": 0.0,
979
+ "completion_length": 232.96667356491088,
980
+ "epoch": 0.9333333333333333,
981
+ "grad_norm": 0.41816839575767517,
982
+ "kl": 1.4766021728515626,
983
+ "learning_rate": 4.0432694130264294e-08,
984
+ "loss": 0.1412,
985
+ "reward": 1.2375000312924385,
986
+ "reward_std": 0.5488180216401816,
987
+ "rewards/accuracy_reward": 0.37708334121853115,
988
+ "rewards/format_reward": 0.8604166824370623,
989
+ "step": 700
990
+ },
991
+ {
992
+ "clip_ratio": 0.0,
993
+ "completion_length": 278.4333411693573,
994
+ "epoch": 0.9466666666666667,
995
+ "grad_norm": 0.5456490516662598,
996
+ "kl": 1.7320938110351562,
997
+ "learning_rate": 2.5919029940380145e-08,
998
+ "loss": 0.2249,
999
+ "reward": 1.2062500290572644,
1000
+ "reward_std": 0.6055900201201438,
1001
+ "rewards/accuracy_reward": 0.3833333427086473,
1002
+ "rewards/format_reward": 0.8229166869074106,
1003
+ "step": 710
1004
+ },
1005
+ {
1006
+ "clip_ratio": 0.0,
1007
+ "completion_length": 239.62500748634338,
1008
+ "epoch": 0.96,
1009
+ "grad_norm": 0.32890596985816956,
1010
+ "kl": 1.458221435546875,
1011
+ "learning_rate": 1.4597896887644457e-08,
1012
+ "loss": 0.1827,
1013
+ "reward": 1.264583370089531,
1014
+ "reward_std": 0.5755864661186934,
1015
+ "rewards/accuracy_reward": 0.4187500111758709,
1016
+ "rewards/format_reward": 0.8458333492279053,
1017
+ "step": 720
1018
+ },
1019
+ {
1020
+ "clip_ratio": 0.0,
1021
+ "completion_length": 274.1791749954224,
1022
+ "epoch": 0.9733333333333334,
1023
+ "grad_norm": 0.3116457760334015,
1024
+ "kl": 1.3982940673828126,
1025
+ "learning_rate": 6.493814025293476e-09,
1026
+ "loss": 0.1776,
1027
+ "reward": 1.231250035017729,
1028
+ "reward_std": 0.5566708967089653,
1029
+ "rewards/accuracy_reward": 0.40000000949949027,
1030
+ "rewards/format_reward": 0.8312500137835741,
1031
+ "step": 730
1032
+ },
1033
+ {
1034
+ "clip_ratio": 0.0,
1035
+ "completion_length": 255.23750734329224,
1036
+ "epoch": 0.9866666666666667,
1037
+ "grad_norm": 0.4142087697982788,
1038
+ "kl": 1.2847900390625,
1039
+ "learning_rate": 1.624332992213151e-09,
1040
+ "loss": 0.1855,
1041
+ "reward": 1.2229166984558106,
1042
+ "reward_std": 0.5469876442104578,
1043
+ "rewards/accuracy_reward": 0.38333334159106014,
1044
+ "rewards/format_reward": 0.8395833514630795,
1045
+ "step": 740
1046
+ },
1047
+ {
1048
+ "clip_ratio": 0.0,
1049
+ "completion_length": 279.8500079154968,
1050
+ "epoch": 1.0,
1051
+ "grad_norm": 0.3987623155117035,
1052
+ "kl": 1.2904449462890626,
1053
+ "learning_rate": 0.0,
1054
+ "loss": 0.2137,
1055
+ "reward": 1.2583333723247052,
1056
+ "reward_std": 0.6197128046303988,
1057
+ "rewards/accuracy_reward": 0.4229166766628623,
1058
+ "rewards/format_reward": 0.8354166867211461,
1059
+ "step": 750
1060
+ },
1061
+ {
1062
+ "epoch": 1.0,
1063
+ "step": 750,
1064
+ "total_flos": 0.0,
1065
+ "train_loss": 0.1488674604743719,
1066
+ "train_runtime": 66920.1081,
1067
+ "train_samples_per_second": 0.09,
1068
+ "train_steps_per_second": 0.011
1069
+ }
1070
+ ],
1071
+ "logging_steps": 10,
1072
+ "max_steps": 750,
1073
+ "num_input_tokens_seen": 0,
1074
+ "num_train_epochs": 1,
1075
+ "save_steps": 500,
1076
+ "stateful_callbacks": {
1077
+ "TrainerControl": {
1078
+ "args": {
1079
+ "should_epoch_stop": false,
1080
+ "should_evaluate": false,
1081
+ "should_log": false,
1082
+ "should_save": true,
1083
+ "should_training_stop": true
1084
+ },
1085
+ "attributes": {}
1086
+ }
1087
+ },
1088
+ "total_flos": 0.0,
1089
+ "train_batch_size": 2,
1090
+ "trial_name": null,
1091
+ "trial_params": null
1092
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:54c54c2d3936a06718bec7a05d94cbe407642258c6026f4827e40add0ee73b27
3
+ size 7800
vocab.json ADDED
The diff for this file is too large to render. See raw diff