Garon16's picture
Update README.md
c1cb6c2 verified
|
raw
history blame
9.7 kB
metadata
library_name: transformers
language:
  - ru
license: apache-2.0
base_model: PekingU/rtdetr_r50vd_coco_o365
tags:
  - generated_from_trainer
model-index:
  - name: RT-DETR Russian car plate detection with classification by type
    results: []

RT-DETR Russian car plate detection with classification by type

This model is a fine-tuned version of PekingU/rtdetr_r50vd_coco_o365 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 4.1673
  • Map: 0.8829
  • Map 50: 0.9858
  • Map 75: 0.9736
  • Map Car-plates-and-these-types: -1.0
  • Map Large: 0.9689
  • Map Medium: 0.9125
  • Map N P: 0.857
  • Map P P: 0.9087
  • Map Small: 0.696
  • Mar 1: 0.8686
  • Mar 10: 0.9299
  • Mar 100: 0.9357
  • Mar 100 Car-plates-and-these-types: -1.0
  • Mar 100 N P: 0.9169
  • Mar 100 P P: 0.9545
  • Mar Large: 0.9844
  • Mar Medium: 0.958
  • Mar Small: 0.8354

Model description

Модель детекции номерных знаков автомобилей РФ, в данный момент 2 класса n_p и p_p, обычные номера и полицейские

Intended uses & limitations

Пример использования:

from transformers import AutoModelForObjectDetection, AutoImageProcessor
import torch
import supervision as sv


DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = AutoModelForObjectDetection.from_pretrained('Garon16/rtdetr_r50vd_russia_plate_detector').to(DEVICE)
processor = AutoImageProcessor.from_pretrained('Garon16/rtdetr_r50vd_russia_plate_detector')

path = 'path/to/image'
image = Image.open(path)
inputs = processor(image, return_tensors="pt").to(DEVICE)
with torch.no_grad():
    outputs = model(**inputs)
w, h = image.size
results = processor.post_process_object_detection(
    outputs, target_sizes=[(h, w)], threshold=0.3)
detections = sv.Detections.from_transformers(results[0]).with_nms(0.3)
labels = [
    model.config.id2label[class_id]
    for class_id
    in detections.class_id
]

annotated_image = image.copy()
annotated_image = sv.BoundingBoxAnnotator().annotate(annotated_image, detections)
annotated_image = sv.LabelAnnotator().annotate(annotated_image, detections, labels=labels)
  
grid = sv.create_tiles(
  [annotated_image],
  grid_size=(1, 1),
  single_tile_size=(512, 512),
  tile_padding_color=sv.Color.WHITE,
  tile_margin_color=sv.Color.WHITE
)
sv.plot_image(grid, size=(10, 10))

Training and evaluation data

Обучал на своём датасете - https://universe.roboflow.com/testcarplate/russian-license-plates-classification-by-this-type

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 300
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Map Map 50 Map 75 Map Car-plates-and-these-types Map Large Map Medium Map N P Map P P Map Small Mar 1 Mar 10 Mar 100 Mar 100 Car-plates-and-these-types Mar 100 N P Mar 100 P P Mar Large Mar Medium Mar Small
No log 1.0 109 64.6127 0.035 0.0558 0.0379 -1.0 0.0039 0.0663 0.0191 0.0508 0.0071 0.1523 0.3009 0.3361 -1.0 0.3179 0.3543 0.7625 0.3788 0.1157
No log 2.0 218 15.4008 0.8237 0.9418 0.9327 -1.0 0.893 0.879 0.7945 0.8529 0.4319 0.8203 0.8924 0.9018 -1.0 0.8766 0.9269 0.9656 0.9324 0.7653
No log 3.0 327 9.4050 0.8439 0.9566 0.9479 -1.0 0.9439 0.8908 0.8158 0.872 0.5171 0.8416 0.908 0.9144 -1.0 0.9002 0.9286 0.9781 0.9368 0.8051
No log 4.0 436 7.9164 0.8493 0.9665 0.9543 -1.0 0.9567 0.8903 0.8338 0.8648 0.5581 0.8481 0.9159 0.9267 -1.0 0.9173 0.936 0.975 0.949 0.8185
70.2867 5.0 545 6.8177 0.8525 0.9723 0.9602 -1.0 0.9521 0.8918 0.8234 0.8816 0.6025 0.8438 0.9214 0.9279 -1.0 0.9181 0.9378 0.975 0.9492 0.8211
70.2867 6.0 654 6.0182 0.854 0.9744 0.9619 -1.0 0.9574 0.8912 0.8251 0.8829 0.6123 0.8438 0.9176 0.927 -1.0 0.9137 0.9403 0.9781 0.9503 0.8163
70.2867 7.0 763 5.4024 0.8731 0.9772 0.9667 -1.0 0.9635 0.9113 0.8462 0.9001 0.6376 0.8608 0.9275 0.9336 -1.0 0.9202 0.9471 0.9781 0.956 0.8266
70.2867 8.0 872 5.2224 0.8726 0.9809 0.9767 -1.0 0.9582 0.9069 0.8487 0.8966 0.6472 0.8625 0.9265 0.9301 -1.0 0.9137 0.9464 0.9875 0.9528 0.8232
70.2867 9.0 981 4.7844 0.8679 0.9821 0.9687 -1.0 0.9574 0.9023 0.8451 0.8907 0.6382 0.8606 0.9213 0.9283 -1.0 0.9119 0.9448 0.9844 0.952 0.8165
4.2466 10.0 1090 5.1437 0.8729 0.9816 0.9762 -1.0 0.9577 0.9028 0.8448 0.901 0.6686 0.8605 0.9296 0.9359 -1.0 0.9203 0.9514 0.9781 0.9567 0.8413
4.2466 11.0 1199 4.5169 0.8858 0.9828 0.9768 -1.0 0.9707 0.9162 0.8628 0.9087 0.6734 0.8695 0.9264 0.931 -1.0 0.9121 0.95 0.9781 0.9538 0.823
4.2466 12.0 1308 4.5858 0.8813 0.9865 0.9744 -1.0 0.9623 0.9126 0.8585 0.9041 0.6815 0.8671 0.9308 0.9355 -1.0 0.9185 0.9526 0.9812 0.9583 0.8308
4.2466 13.0 1417 4.5345 0.8778 0.9843 0.9726 -1.0 0.957 0.9101 0.8526 0.903 0.6754 0.8628 0.9281 0.9335 -1.0 0.9158 0.9512 0.9812 0.9557 0.8314
3.589 14.0 1526 4.3003 0.8885 0.9857 0.9759 -1.0 0.9656 0.9189 0.8642 0.9128 0.6957 0.8724 0.9334 0.9375 -1.0 0.9194 0.9555 0.9875 0.959 0.8375
3.589 15.0 1635 4.3999 0.8819 0.986 0.9741 -1.0 0.9606 0.9118 0.8575 0.9064 0.6892 0.8659 0.9283 0.9336 -1.0 0.9137 0.9534 0.9844 0.9566 0.8245
3.589 16.0 1744 4.2719 0.8796 0.986 0.9726 -1.0 0.9661 0.9093 0.8543 0.905 0.6914 0.8649 0.927 0.9313 -1.0 0.9121 0.9505 0.9875 0.9543 0.8266
3.589 17.0 1853 4.2497 0.8838 0.9845 0.9733 -1.0 0.9656 0.9141 0.8599 0.9077 0.6997 0.8678 0.9295 0.9352 -1.0 0.9141 0.9562 0.9812 0.958 0.832
3.589 18.0 1962 4.2807 0.8829 0.9855 0.9754 -1.0 0.9673 0.9121 0.8558 0.9099 0.6964 0.8683 0.9286 0.9337 -1.0 0.9126 0.9548 0.9844 0.9555 0.8357
3.2442 19.0 2071 4.1978 0.8835 0.9861 0.9748 -1.0 0.9675 0.9121 0.8559 0.911 0.6932 0.8691 0.9272 0.9336 -1.0 0.9134 0.9538 0.9844 0.9557 0.8337
3.2442 20.0 2180 4.1673 0.8829 0.9858 0.9736 -1.0 0.9689 0.9125 0.857 0.9087 0.696 0.8686 0.9299 0.9357 -1.0 0.9169 0.9545 0.9844 0.958 0.8354

Framework versions

  • Transformers 4.46.0.dev0
  • Pytorch 2.5.0+cu124
  • Tokenizers 0.20.1