GanymedeNil
commited on
Commit
•
51d7b1b
1
Parent(s):
37fc49e
Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: other
|
3 |
+
license_name: gemma-terms-of-use
|
4 |
+
license_link: https://ai.google.dev/gemma/terms
|
5 |
+
language:
|
6 |
+
- zh
|
7 |
+
pipeline_tag: text-generation
|
8 |
+
datasets: linux-cn/archive
|
9 |
+
library_name: transformers
|
10 |
+
---
|
11 |
+
# 介绍
|
12 |
+
本模型主要用途为基于科技类文章生成对应标题。
|
13 |
+
本次将开源从 100-2200 steps 的中间所有 checkpoint 以供大家参考。
|
14 |
+
|
15 |
+
# 使用
|
16 |
+
|
17 |
+
```python
|
18 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer,BitsAndBytesConfig
|
19 |
+
|
20 |
+
peft_model_id = "checkpoint-2000"
|
21 |
+
model = AutoModelForCausalLM.from_pretrained(peft_model_id,device_map="cuda")
|
22 |
+
|
23 |
+
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b")
|
24 |
+
|
25 |
+
input_text = """
|
26 |
+
Generate a title for the article:
|
27 |
+
|
28 |
+
{content}
|
29 |
+
|
30 |
+
---
|
31 |
+
Title:
|
32 |
+
""" # 固定格式
|
33 |
+
encoding = tokenizer(input_text, return_tensors="pt").to("cuda")
|
34 |
+
|
35 |
+
outputs = model.generate(**encoding,max_length=8000,temperature=0.2,do_sample=True)
|
36 |
+
generated_ids = outputs[:, encoding.input_ids.shape[1]:]
|
37 |
+
generated_texts = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
|
38 |
+
print(generated_texts[0])
|
39 |
+
|
40 |
+
```
|
41 |
+
|
42 |
+
# 训练数据
|
43 |
+
linux-cn 文章
|
44 |
+
https://huggingface.co/datasets/linux-cn/archive
|
45 |
+
|
46 |
+
# 微调
|
47 |
+
基于 [LLaMA-Factory](https://github.com/hiyouga/LLaMA-Factory) 进行微调,微调参数如下
|
48 |
+
|
49 |
+
```bash
|
50 |
+
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
|
51 |
+
--stage sft \
|
52 |
+
--do_train True \
|
53 |
+
--model_name_or_path google/gemma-2b \
|
54 |
+
--finetuning_type lora \
|
55 |
+
--template default \
|
56 |
+
--dataset title \
|
57 |
+
--use_unsloth \
|
58 |
+
--cutoff_len 8192 \
|
59 |
+
--learning_rate 5e-05 \
|
60 |
+
--num_train_epochs 10.0 \
|
61 |
+
--max_samples 10000 \
|
62 |
+
--per_device_train_batch_size 4 \
|
63 |
+
--per_device_eval_batch_size 4 \
|
64 |
+
--gradient_accumulation_steps 4 \
|
65 |
+
--lr_scheduler_type cosine \
|
66 |
+
--max_grad_norm 1.0 \
|
67 |
+
--logging_steps 10 \
|
68 |
+
--save_steps 100 \
|
69 |
+
--eval_steps 100 \
|
70 |
+
--evaluation_strategy steps \
|
71 |
+
--warmup_steps 0 \
|
72 |
+
--output_dir saves/Gemma-2B/lora/train_2024-03-01-04-36-32 \
|
73 |
+
--bf16 True \
|
74 |
+
--lora_rank 8 \
|
75 |
+
--lora_dropout 0.1 \
|
76 |
+
--lora_target q_proj,v_proj \
|
77 |
+
--val_size 0.1 \
|
78 |
+
--load_best_model_at_end True \
|
79 |
+
--plot_loss True \
|
80 |
+
--report_to "tensorboard"
|
81 |
+
```
|