metadata
library_name: transformers
language:
- id
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
model-index:
- name: Whisper Small Id - Tiny - Test
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 11.0
type: mozilla-foundation/common_voice_11_0
config: id
split: None
args: 'config: id, split: test'
metrics:
- name: Wer
type: wer
value: 57.08661417322835
Whisper Small Id - Tiny - Test
This model is a fine-tuned version of openai/whisper-small on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set:
- Loss: 1.2653
- Wer: 57.0866
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2
- training_steps: 10
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
1.7861 | 0.0312 | 1 | 1.6331 | 93.3071 |
1.883 | 0.0625 | 2 | 1.5606 | 61.8110 |
1.7576 | 0.0938 | 3 | 1.4525 | 59.0551 |
1.5225 | 0.125 | 4 | 1.3888 | 59.0551 |
1.3685 | 0.1562 | 5 | 1.3456 | 57.4803 |
1.353 | 0.1875 | 6 | 1.3157 | 58.2677 |
1.5608 | 0.2188 | 7 | 1.2949 | 56.2992 |
1.3093 | 0.25 | 8 | 1.2799 | 56.2992 |
1.4337 | 0.2812 | 9 | 1.2701 | 57.0866 |
1.3561 | 0.3125 | 10 | 1.2653 | 57.0866 |
Framework versions
- Transformers 4.46.3
- Pytorch 2.5.1+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3