|
--- |
|
license: mit |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: bart-base-cnn-xsum-swe |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# bart-base-cnn-xsum-swe |
|
|
|
This model is a fine-tuned version of [Gabriel/bart-base-cnn-swe](https://huggingface.co/Gabriel/bart-base-cnn-swe) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 2.1140 |
|
- Rouge1: 30.7101 |
|
- Rouge2: 11.9532 |
|
- Rougel: 25.1864 |
|
- Rougelsum: 25.2227 |
|
- Gen Len: 19.7448 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 3.75e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 32 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- num_epochs: 3 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |
|
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| |
|
| 2.3087 | 1.0 | 6375 | 2.1997 | 29.7666 | 11.0222 | 24.2659 | 24.2915 | 19.7172 | |
|
| 2.0793 | 2.0 | 12750 | 2.1285 | 30.4447 | 11.7671 | 24.9238 | 24.9622 | 19.7051 | |
|
| 1.9186 | 3.0 | 19125 | 2.1140 | 30.7101 | 11.9532 | 25.1864 | 25.2227 | 19.7448 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.22.1 |
|
- Pytorch 1.12.1+cu113 |
|
- Datasets 2.5.1 |
|
- Tokenizers 0.12.1 |
|
|