|
--- |
|
license: mit |
|
tags: |
|
- generated_from_trainer |
|
|
|
inference: |
|
parameters: |
|
temperature: 0.7 |
|
min_length: 30 |
|
max_length: 120 |
|
num_beams: 5 |
|
|
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: bart-base-cnn-xsum-swe |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# bart-base-cnn-xsum-swe |
|
|
|
This model is a fine-tuned version of [Gabriel/bart-base-cnn-swe](https://huggingface.co/Gabriel/bart-base-cnn-swe) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 2.1895 |
|
- Rouge1: 31.1693 |
|
- Rouge2: 12.7388 |
|
- Rougel: 25.7655 |
|
- Rougelsum: 25.7862 |
|
- Gen Len: 19.7733 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 32 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- num_epochs: 8 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |
|
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| |
|
| 2.3079 | 1.0 | 6375 | 2.1998 | 29.7845 | 11.125 | 24.3181 | 24.3562 | 19.7119 | |
|
| 2.064 | 2.0 | 12750 | 2.1245 | 30.4641 | 11.7383 | 25.0254 | 25.0633 | 19.653 | |
|
| 1.8647 | 3.0 | 19125 | 2.1005 | 30.8903 | 12.2265 | 25.3996 | 25.4252 | 19.7457 | |
|
| 1.7098 | 4.0 | 25500 | 2.1073 | 31.1173 | 12.4124 | 25.6553 | 25.6913 | 19.7546 | |
|
| 1.5761 | 5.0 | 31875 | 2.1227 | 30.9586 | 12.4907 | 25.5474 | 25.5745 | 19.7675 | |
|
| 1.4618 | 6.0 | 38250 | 2.1484 | 31.115 | 12.6546 | 25.684 | 25.7151 | 19.7456 | |
|
| 1.3643 | 7.0 | 44625 | 2.1705 | 31.2225 | 12.8069 | 25.7901 | 25.8154 | 19.7842 | |
|
| 1.2944 | 8.0 | 51000 | 2.1895 | 31.1693 | 12.7388 | 25.7655 | 25.7862 | 19.7733 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.22.1 |
|
- Pytorch 1.12.1+cu113 |
|
- Datasets 2.5.1 |
|
- Tokenizers 0.12.1 |
|
|