update model card README.md
Browse files
README.md
CHANGED
@@ -1,67 +1,39 @@
|
|
1 |
---
|
2 |
-
language: sv
|
3 |
license: mit
|
4 |
-
datasets:
|
5 |
-
- Gabriel/cnn_daily_swe
|
6 |
tags:
|
7 |
-
-
|
8 |
-
|
9 |
-
|
10 |
-
- text: "En kronologi av bombningar och försök bombattacker i det brittiska fastlandet sedan 1970-talet:. Polisen stänger gatorna runt Haymarket, i Londons livliga teaterdistrikt. 29 juni 2007: Polisen desarmerar en bomb bestående av 200 liter bränsle, gasflaskor och spikar som hittats i en övergiven bil i Haymarket i centrala London. En andra bil fylld med gas och spikar befanns senare ha parkerats bara några hundra meter från den första, innan den bogserades bort av trafikvakter i början av fredagen för att bryta parkeringsrestriktioner. Polisen säger att två fordon är tydligt kopplade. 21 juli 2005: Två veckor efter de dödliga 7/7 bombningarna påstås fyra män ha försökt genomföra en andra våg av attacker mot Londons transportnät vid tre tunnelbanestationer i London och ombord på en buss. Men deras påstådda ryggsäcksbomber exploderar inte. 7 juli 2005: Fyra självmordsbombare detonerar sig själva ombord på tre underjordiska tåg och en buss i en morgon rusningstid attack mot Londons transportnät, döda 52 människor och skada omkring 700 fler. Al-Qaida tar på sig ansvaret i ett videouttalande."
|
11 |
-
|
12 |
model-index:
|
13 |
- name: bart-base-cnn-swe
|
14 |
-
results:
|
15 |
-
- task:
|
16 |
-
type: summarization
|
17 |
-
name: summarization
|
18 |
-
dataset:
|
19 |
-
name: Gabriel/cnn_daily_swe
|
20 |
-
type: Gabriel/cnn_daily_swe
|
21 |
-
split: validation
|
22 |
-
metrics:
|
23 |
-
- name: Validation ROGUE-1
|
24 |
-
type: rouge-1
|
25 |
-
value: 21.7291
|
26 |
-
verified: true
|
27 |
-
- name: Validation ROGUE-2
|
28 |
-
type: rouge-2
|
29 |
-
value: 10.0209
|
30 |
-
verified: true
|
31 |
-
- name: Validation ROGUE-L
|
32 |
-
type: rouge-l
|
33 |
-
value: 17.775
|
34 |
-
verified: true
|
35 |
---
|
36 |
|
37 |
-
|
38 |
-
|
39 |
-
WORK IN PROGRESS!
|
40 |
-
- 1. Further fine-tune on checkpoint with cnn-daily-swe.
|
41 |
-
- 2. Further fine-tune on xsum-swe.
|
42 |
-
- 3. Lastly fine-tune on smaller domain dataset.
|
43 |
|
44 |
-
|
45 |
|
|
|
46 |
It achieves the following results on the evaluation set:
|
47 |
-
- Loss: 2.
|
48 |
-
- Rouge1:
|
49 |
-
- Rouge2: 10.
|
50 |
-
- Rougel:
|
51 |
-
- Rougelsum: 20.
|
52 |
-
- Gen Len: 19.
|
53 |
|
54 |
## Model description
|
55 |
|
56 |
-
|
57 |
|
58 |
## Intended uses & limitations
|
59 |
|
60 |
-
|
61 |
|
62 |
## Training and evaluation data
|
63 |
|
64 |
-
|
65 |
|
66 |
## Training procedure
|
67 |
|
@@ -69,20 +41,27 @@ WORK IN PROGRESS!
|
|
69 |
|
70 |
The following hyperparameters were used during training:
|
71 |
- learning_rate: 2e-05
|
72 |
-
- train_batch_size:
|
73 |
-
- eval_batch_size:
|
74 |
- seed: 42
|
75 |
-
- gradient_accumulation_steps:
|
76 |
- total_train_batch_size: 16
|
77 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
78 |
- lr_scheduler_type: linear
|
79 |
-
- num_epochs:
|
80 |
- mixed_precision_training: Native AMP
|
81 |
|
82 |
### Training results
|
83 |
|
84 |
-
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel
|
85 |
-
|
86 |
-
| 2.
|
|
|
|
|
87 |
|
|
|
88 |
|
|
|
|
|
|
|
|
|
|
1 |
---
|
|
|
2 |
license: mit
|
|
|
|
|
3 |
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- rouge
|
|
|
|
|
7 |
model-index:
|
8 |
- name: bart-base-cnn-swe
|
9 |
+
results: []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
---
|
11 |
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
|
|
|
|
|
|
|
|
14 |
|
15 |
+
# bart-base-cnn-swe
|
16 |
|
17 |
+
This model is a fine-tuned version of [Gabriel/bart-base-cnn-swe](https://huggingface.co/Gabriel/bart-base-cnn-swe) on the None dataset.
|
18 |
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 2.0253
|
20 |
+
- Rouge1: 22.0568
|
21 |
+
- Rouge2: 10.3302
|
22 |
+
- Rougel: 18.0648
|
23 |
+
- Rougelsum: 20.7482
|
24 |
+
- Gen Len: 19.9996
|
25 |
|
26 |
## Model description
|
27 |
|
28 |
+
More information needed
|
29 |
|
30 |
## Intended uses & limitations
|
31 |
|
32 |
+
More information needed
|
33 |
|
34 |
## Training and evaluation data
|
35 |
|
36 |
+
More information needed
|
37 |
|
38 |
## Training procedure
|
39 |
|
|
|
41 |
|
42 |
The following hyperparameters were used during training:
|
43 |
- learning_rate: 2e-05
|
44 |
+
- train_batch_size: 8
|
45 |
+
- eval_batch_size: 8
|
46 |
- seed: 42
|
47 |
+
- gradient_accumulation_steps: 2
|
48 |
- total_train_batch_size: 16
|
49 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
- lr_scheduler_type: linear
|
51 |
+
- num_epochs: 2
|
52 |
- mixed_precision_training: Native AMP
|
53 |
|
54 |
### Training results
|
55 |
|
56 |
+
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|
57 |
+
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
|
58 |
+
| 2.2349 | 1.0 | 17944 | 2.0643 | 21.9564 | 10.2133 | 17.9958 | 20.6502 | 19.9992 |
|
59 |
+
| 2.0726 | 2.0 | 35888 | 2.0253 | 22.0568 | 10.3302 | 18.0648 | 20.7482 | 19.9996 |
|
60 |
+
|
61 |
|
62 |
+
### Framework versions
|
63 |
|
64 |
+
- Transformers 4.22.0
|
65 |
+
- Pytorch 1.12.1+cu113
|
66 |
+
- Datasets 2.4.0
|
67 |
+
- Tokenizers 0.12.1
|