Gabi00's picture
End of training
aa6d0ef verified
metadata
base_model: distil-whisper/distil-large-v3
datasets:
  - Gabi00/english-mistakes
language:
  - eng
library_name: peft
license: apache-2.0
metrics:
  - wer
tags:
  - generated_from_trainer
model-index:
  - name: Whisper Small Eng - Gabriel Mora
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: English-mistakes
          type: Gabi00/english-mistakes
          config: default
          split: validation
          args: 'config: eng, split: test'
        metrics:
          - type: wer
            value: 18.233650721249788
            name: Wer

Whisper Small Eng - Gabriel Mora

This model is a fine-tuned version of openai/whisper-small on the English-mistakes dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6550
  • Wer: 18.2337

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 28
  • eval_batch_size: 28
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 50
  • training_steps: 100000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
1.5085 0.4444 500 1.1844 25.9507
1.1717 0.8889 1000 0.9522 25.2751
1.1302 1.3333 1500 0.8634 22.0879
1.0094 1.7778 2000 0.8098 21.0103
1.0509 2.2222 2500 0.7784 23.2054
0.9722 2.6667 3000 0.7555 21.5206
0.9562 3.1111 3500 0.7401 21.0075
0.9995 3.5556 4000 0.7269 19.8985
0.9497 4.0 4500 0.7170 19.3626
0.8703 4.4444 5000 0.7078 19.4652
1.0015 4.8889 5500 0.7004 20.1608
0.9248 5.3333 6000 0.6947 17.7034
0.9163 5.7778 6500 0.6880 17.4953
0.8833 6.2222 7000 0.6823 17.4668
0.9051 6.6667 7500 0.6770 17.4554
0.8882 7.1111 8000 0.6730 17.3613
0.8879 7.5556 8500 0.6684 18.3220
0.8396 8.0 9000 0.6647 18.2165
0.9282 8.4444 9500 0.6616 18.4646
0.8581 8.8889 10000 0.6578 18.1538
0.8938 9.3333 10500 0.6550 18.2337

Framework versions

  • PEFT 0.11.1
  • Transformers 4.42.3
  • Pytorch 2.1.0+cu118
  • Datasets 2.20.0
  • Tokenizers 0.19.1