Upload PPO LunarLander-v2 trained agent
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-v2.zip +2 -2
- ppo-LunarLander-v2/data +17 -17
- ppo-LunarLander-v2/policy.optimizer.pth +1 -1
- ppo-LunarLander-v2/policy.pth +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 248.05 +/- 44.30
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f92b4246d30>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f92b4246dc0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f92b4246e50>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f92b4246ee0>", "_build": "<function ActorCriticPolicy._build at 0x7f92b4246f70>", "forward": "<function ActorCriticPolicy.forward at 0x7f92b424a040>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f92b424a0d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f92b424a160>", "_predict": "<function ActorCriticPolicy._predict at 0x7f92b424a1f0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f92b424a280>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f92b424a310>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f92b424a3a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f92b4241d20>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1676990888049088737, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAI0DzD2kMAu7k2USPKdiGjyBcAC8JqcKPQAAgD8AAIA/zSI8PSa3OT/kDpo995+ZvnETBz0gUEi9AAAAAAAAAACaORM99mB+unD02zTG9M0wr7X7OlXxH7QAAIA/AACAP6blHD79HAE+Q8vXvVlJkb7kiyk9evIhPAAAAAAAAAAAGqDnPY/FaLx+DCS95NplvWJ02rxmFH2+AACAPwAAgD8gb4K+lM0MP3hDST7x5q++ho1ou5pZXj0AAAAAAAAAAGbcCzwkWAs+tbKVvTNDh75NN4S9Kf6UPQAAAAAAAAAAmsZ+vT7SqT9NVu29BV+5vvbiRr47Fp+9AAAAAAAAAAAd74c+VuPhPtcYOL4+Ok++pngNPj0yU74AAAAAAAAAANo9/708TJs+5NIKPkAEir6AZMq8GSgJPQAAAAAAAAAAZmIfvE2Esz9wGqK+kBYbvpG9sjtfKxa7AAAAAAAAAABmUu+7GdCiPhrB3r0ZM1u+MY6IvctM/r0AAAAAAAAAAJpJgLr2nCq6kkcFObOnFLP7B3i67m0auAAAgD8AAIA/MxpJvSnUNT+Ic/M9n3/ovvn2ID28q0c9AAAAAAAAAADmr9W9AVitPzV7kb5BvXm+o/I7vgIYCr0AAAAAAAAAAOYeQz32OBs5QwvstXluT7EuA+A74WkgNQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVXRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI3xtDAPCMbkCUhpRSlIwBbJRNTgGMAXSUR0Cd0SD3dsSCdX2UKGgGaAloD0MI/Io1XGTlcUCUhpRSlGgVS/BoFkdAndNYJu2qk3V9lChoBmgJaA9DCLA8SE/RcXJAlIaUUpRoFU0RAWgWR0Cd1KEx7AtWdX2UKGgGaAloD0MILbDHRAqEcUCUhpRSlGgVS/hoFkdAndUTXjENv3V9lChoBmgJaA9DCJCeIoeIZVRAlIaUUpRoFUvMaBZHQJ3VjIFNcnp1fZQoaAZoCWgPQwjL2NDNfrByQJSGlFKUaBVNHgFoFkdAndcSmMwUQHV9lChoBmgJaA9DCDFAogmUW3JAlIaUUpRoFUv1aBZHQJ3XbUy57PZ1fZQoaAZoCWgPQwhAL9y5cCFwQJSGlFKUaBVNDQFoFkdAndg3ZK3/gnV9lChoBmgJaA9DCP65aMg4tnFAlIaUUpRoFU0cAWgWR0Cd2aBpHqeLdX2UKGgGaAloD0MIlgoqqn7+bkCUhpRSlGgVTQ0BaBZHQJ3aBk6Lfk51fZQoaAZoCWgPQwjm6VxRyh1wQJSGlFKUaBVNMwFoFkdAndoSqU/wAnV9lChoBmgJaA9DCHZUNUHU/3BAlIaUUpRoFU0NAWgWR0Cd20nuRcNZdX2UKGgGaAloD0MIQMBatevKcECUhpRSlGgVTSkBaBZHQJ3bxTcZccF1fZQoaAZoCWgPQwhcVmEzgD9xQJSGlFKUaBVNJwFoFkdAndv61LJ0XHV9lChoBmgJaA9DCCL7IMuC4m9AlIaUUpRoFU1CAWgWR0Cd3PZ39rGjdX2UKGgGaAloD0MI8KSFyyr0OkCUhpRSlGgVS9BoFkdAnd1qdhAnlXV9lChoBmgJaA9DCBXJVwIpKnBAlIaUUpRoFUv1aBZHQJ3e8PsiSq51fZQoaAZoCWgPQwjZPXlYaKZyQJSGlFKUaBVNUAFoFkdAnd8nBHkLhXV9lChoBmgJaA9DCKBU+3Q8W21AlIaUUpRoFU0FAWgWR0Cd39Tkhib2dX2UKGgGaAloD0MIxty1hHxDcECUhpRSlGgVS+9oFkdAneAXZwn6VXV9lChoBmgJaA9DCP0xrU2joXFAlIaUUpRoFU07AWgWR0Cd4CQ/HHWCdX2UKGgGaAloD0MIsI9OXXm2bUCUhpRSlGgVTbkBaBZHQJ3gv7O3UhF1fZQoaAZoCWgPQwgA/b5/Mw1xQJSGlFKUaBVL3GgWR0Cd4PaouPFOdX2UKGgGaAloD0MIIxEawQaQcUCUhpRSlGgVTRoBaBZHQJ3hdXlr/Kh1fZQoaAZoCWgPQwgLDFndqohxQJSGlFKUaBVL8GgWR0Cd4cXTmW+odX2UKGgGaAloD0MI36Y/+xG/bUCUhpRSlGgVTUEBaBZHQJ3jEfJV81J1fZQoaAZoCWgPQwizeofbIa1yQJSGlFKUaBVL/mgWR0Cd42WweNkwdX2UKGgGaAloD0MIUU8fgT9LbkCUhpRSlGgVTVQBaBZHQJ3kzFefI0Z1fZQoaAZoCWgPQwjS4SGM38VzQJSGlFKUaBVNJAFoFkdAneTSyyD7InV9lChoBmgJaA9DCG0a22tB+3BAlIaUUpRoFU0CAWgWR0Cd5V66reZYdX2UKGgGaAloD0MIuti0UgiQckCUhpRSlGgVTR0BaBZHQJ3lrGrCFbp1fZQoaAZoCWgPQwgXZqGdUw1xQJSGlFKUaBVL+WgWR0Cd5q+lj3EidX2UKGgGaAloD0MIQiRDji3Pa0CUhpRSlGgVTQcBaBZHQJ3m8NDtw711fZQoaAZoCWgPQwibjgBu1j9zQJSGlFKUaBVL+mgWR0Cd52PGhmGudX2UKGgGaAloD0MIICV2bW8eb8CUhpRSlGgVTZEBaBZHQJ3nkV1wHZ91fZQoaAZoCWgPQwhzSkBMgqJxQJSGlFKUaBVL/2gWR0Cd58exwAEMdX2UKGgGaAloD0MI0o4bfvdFcUCUhpRSlGgVTRwBaBZHQJ3ojWI42jx1fZQoaAZoCWgPQwiIZMix9clwQJSGlFKUaBVNDgFoFkdAnekQJ9iMHnV9lChoBmgJaA9DCObN4VptZm9AlIaUUpRoFU0HAWgWR0Cd6WCFK02MdX2UKGgGaAloD0MIv36IDZb7b0CUhpRSlGgVTUUBaBZHQJ3qijHn2Zl1fZQoaAZoCWgPQwjZzYx+NKdwQJSGlFKUaBVNBwFoFkdAnesj72tdRnV9lChoBmgJaA9DCANckC3L/HFAlIaUUpRoFUvuaBZHQJ3sOiKziS91fZQoaAZoCWgPQwgO9iaG5LtvQJSGlFKUaBVL/mgWR0CeAJhd+ocadX2UKGgGaAloD0MISG+4jxwacUCUhpRSlGgVTTQBaBZHQJ4A9CngpBp1fZQoaAZoCWgPQwir7Sb4pvhvQJSGlFKUaBVL9WgWR0CeAUjzZpSKdX2UKGgGaAloD0MIUcHhBRGOUkCUhpRSlGgVS8hoFkdAngIPQ8fV7XV9lChoBmgJaA9DCPQ1y2WjBHBAlIaUUpRoFU0EAWgWR0CeAuyzollcdX2UKGgGaAloD0MIE7U0twIackCUhpRSlGgVTUgBaBZHQJ4EFXHR1HR1fZQoaAZoCWgPQwis4SL3tNNxQJSGlFKUaBVNHQFoFkdAngR8ejmCAnV9lChoBmgJaA9DCKGDLuHQ729AlIaUUpRoFU0ZAWgWR0CeBO446wMZdX2UKGgGaAloD0MIVg3C3O5TcUCUhpRSlGgVTRQBaBZHQJ4E+wgTyrh1fZQoaAZoCWgPQwgYfJqTF5NxQJSGlFKUaBVNLgFoFkdAngf5+YtxuXV9lChoBmgJaA9DCOyIQzZQaHBAlIaUUpRoFU0uAWgWR0CeCONlAeJYdX2UKGgGaAloD0MIlEvjF96ibkCUhpRSlGgVTQcBaBZHQJ4JSdvsJIF1fZQoaAZoCWgPQwhinwCKEV5xQJSGlFKUaBVNNQFoFkdAngm7ZzxPPHV9lChoBmgJaA9DCOKS407pz29AlIaUUpRoFUv2aBZHQJ4LhSk0rLB1fZQoaAZoCWgPQwgaGeQuwstwQJSGlFKUaBVNFAFoFkdAngxNmUW2w3V9lChoBmgJaA9DCFgAUwYOsnFAlIaUUpRoFU0/AWgWR0CeDOHNHH3ldX2UKGgGaAloD0MIkuumlNcmb0CUhpRSlGgVS99oFkdAng3NWp6yB3V9lChoBmgJaA9DCIo+H2VEw25AlIaUUpRoFU0SAWgWR0CeDfZ+QU5/dX2UKGgGaAloD0MIrHR3nc2McECUhpRSlGgVTRQBaBZHQJ4PQwTM7lt1fZQoaAZoCWgPQwiM8szLYbZxQJSGlFKUaBVL9mgWR0CeEKW9DhLodX2UKGgGaAloD0MIDvRQ2wbYckCUhpRSlGgVTQUBaBZHQJ4RAophF3J1fZQoaAZoCWgPQwigbqDAOwBUQJSGlFKUaBVLpWgWR0CeERBy0a60dX2UKGgGaAloD0MI1SR4Q5qDbECUhpRSlGgVS/9oFkdAnhGGvKU3XXV9lChoBmgJaA9DCMJR8uocKHBAlIaUUpRoFU0MAWgWR0CeEicXFcY7dX2UKGgGaAloD0MIiUD1D6KpckCUhpRSlGgVS/9oFkdAnhSFlf7aZnV9lChoBmgJaA9DCFJhbCHI+XBAlIaUUpRoFU0fAWgWR0CeF4dfLLZBdX2UKGgGaAloD0MIsmfPZeoucECUhpRSlGgVTRgBaBZHQJ4XsN7SiM51fZQoaAZoCWgPQwjtmpDWGPllQJSGlFKUaBVNXQNoFkdAnhjPSH/LknV9lChoBmgJaA9DCLqgvmWOFHFAlIaUUpRoFUvvaBZHQJ4Y8cABDG91fZQoaAZoCWgPQwiF7Sdj/ItxQJSGlFKUaBVNCgFoFkdAnhj6L4vexnV9lChoBmgJaA9DCIIC7+QTKnJAlIaUUpRoFU0EAWgWR0CeGTqlP8AJdX2UKGgGaAloD0MIPE88Z4uPb0CUhpRSlGgVS/9oFkdAnhoaCxu89XV9lChoBmgJaA9DCK1RD9Fop3JAlIaUUpRoFUv3aBZHQJ4bmvq1PWR1fZQoaAZoCWgPQwhv9gfKLaJwQJSGlFKUaBVNMQFoFkdAnhuuBMBZIXV9lChoBmgJaA9DCMg/M4hPt3FAlIaUUpRoFU0WAWgWR0CeG7fa6BiDdX2UKGgGaAloD0MIiesYV5w6cUCUhpRSlGgVS/hoFkdAnhwz7Q9idHV9lChoBmgJaA9DCKhzRSkhRXFAlIaUUpRoFU0GAWgWR0CeHFcpb2UTdX2UKGgGaAloD0MIwqG3eHgscUCUhpRSlGgVTRwBaBZHQJ4c9IFvAGl1fZQoaAZoCWgPQwi9qUiFcV9wQJSGlFKUaBVNDAFoFkdAnh02UKRdQnV9lChoBmgJaA9DCAn5oGczLnBAlIaUUpRoFU0gAWgWR0CeH1Y+jdpJdX2UKGgGaAloD0MIJ6Q1Bp1UQ0CUhpRSlGgVS8toFkdAnh+Y150KZ3V9lChoBmgJaA9DCDyfAfXmz3FAlIaUUpRoFUv+aBZHQJ4gGEAYHgR1fZQoaAZoCWgPQwgOhc/WgTFxQJSGlFKUaBVL/2gWR0CeIDXpW3jNdX2UKGgGaAloD0MIWB8PfXd2Z0CUhpRSlGgVTeYCaBZHQJ4ggYZVGTd1fZQoaAZoCWgPQwiKyLCKt2RyQJSGlFKUaBVL92gWR0CeILGZNO/MdX2UKGgGaAloD0MIcJaS5eTGcUCUhpRSlGgVS/hoFkdAniHRR/EwWXV9lChoBmgJaA9DCBUA4xk0A3FAlIaUUpRoFU0kAWgWR0CeIejj7yhBdX2UKGgGaAloD0MIc0f/yzXAckCUhpRSlGgVTToBaBZHQJ4ioXtShrZ1fZQoaAZoCWgPQwgNGY9SyftyQJSGlFKUaBVL/WgWR0CeI09+w1R+dX2UKGgGaAloD0MI9YHknQONckCUhpRSlGgVTQwBaBZHQJ4jrwe/5+J1fZQoaAZoCWgPQwgKZeHr65twQJSGlFKUaBVNDAFoFkdAniO/9gnc+XV9lChoBmgJaA9DCBVwz/OnLnBAlIaUUpRoFUvzaBZHQJ4kcX40uUV1fZQoaAZoCWgPQwgv3o/bL91wQJSGlFKUaBVNIQFoFkdAniWKxHG0eHV9lChoBmgJaA9DCPjEOlW+33BAlIaUUpRoFU08AWgWR0CeJZzOX3QEdX2UKGgGaAloD0MIAoI5erwYckCUhpRSlGgVTUEBaBZHQJ4l4zBRAKR1fZQoaAZoCWgPQwhDxw4qcdFzQJSGlFKUaBVL8WgWR0CeJxKlYU35dX2UKGgGaAloD0MIkiOdgZFOb0CUhpRSlGgVS/FoFkdAnicwBtDUmXV9lChoBmgJaA9DCLQ8D+5O+nBAlIaUUpRoFU0fAWgWR0CeJ/rp7kXDdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f31a6918d30>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f31a6918dc0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f31a6918e50>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f31a6918ee0>", "_build": "<function ActorCriticPolicy._build at 0x7f31a6918f70>", "forward": "<function ActorCriticPolicy.forward at 0x7f31a691d040>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f31a691d0d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f31a691d160>", "_predict": "<function ActorCriticPolicy._predict at 0x7f31a691d1f0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f31a691d280>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f31a691d310>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f31a691d3a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f31a698ff90>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677055515783724709, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAE1ZJD2blCw/jVpZvbsbzr5cTYE948fdvQAAAAAAAAAAZv1YPcOhYLpab6E7Dzb4uKiXkDtF/++3AACAPwAAgD/NZe48CLGnP5tgxT6UYji//YTaOz/YCz4AAAAAAAAAAE3PfD1IL5e6aEMsNayEiDBSggK6pp9htAAAgD8AAIA/5v0ovT26IbnZsKg8A9vtsxG0lDsFO5yzAAAAAAAAgD9GzCM+eDHiPrFXI77Qoaq+x1pjvDokob0AAAAAAAAAACaMSL6b25W8xrNHu5oFn7n/WQI+AA5zOgAAgD8AAIA/MwxCvl1FPz/Dnia+RwvsvvMPQr5635I9AAAAAAAAAABmVci81N+2PUrx8D1UejK+80XvvJ5B0zwAAAAAAAAAAE0hUz2khAi7inmzPMGpkzxL3SS8AJx+PQAAgD8AAIA/M2sFu9bwLj0CSY0+dQEFvrh3rT3Qb3w8AAAAAAAAAAAArnY8KflrvDIHkzvTcrM8KvnUvfzSjz0AAIA/AACAPzN27j3i2C4+IkQKvTPyg77FC6+8OFmJPQAAAAAAAAAA0EBdvjftCj+JDhA+B2zLvlUOsb3yWII9AAAAAAAAAACmpdA95N6uP50o6D5F7ri+0loHPpKQZz4AAAAAAAAAAGbg/Dz+3i0/XK6YuwJp1r5jkFc8gyaCvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIr84xIPuIcUCUhpRSlIwBbJRL84wBdJRHQJNhl5v99+h1fZQoaAZoCWgPQwi3tBoSt1dwQJSGlFKUaBVL82gWR0CTY5xbB42TdX2UKGgGaAloD0MI02pI3KOwcUCUhpRSlGgVS91oFkdAk2OsHWz4UXV9lChoBmgJaA9DCBubHan+OXNAlIaUUpRoFU0IAWgWR0CTZIzWf9P2dX2UKGgGaAloD0MIbqMBvAWkckCUhpRSlGgVS/poFkdAk2THanJkoXV9lChoBmgJaA9DCLSvPEiPt3NAlIaUUpRoFUvVaBZHQJNlYJ2MbWF1fZQoaAZoCWgPQwjb+BOVDTByQJSGlFKUaBVL1WgWR0CTZdPxhDw6dX2UKGgGaAloD0MIZVHYRdFzcECUhpRSlGgVS/5oFkdAk2Y/EOy3TnV9lChoBmgJaA9DCAjnU8dq4nBAlIaUUpRoFU0CAWgWR0CTZtrZJ04jdX2UKGgGaAloD0MIbY/ecB+PbkCUhpRSlGgVS99oFkdAk2cKIN3GGXV9lChoBmgJaA9DCLHeqBUm1HBAlIaUUpRoFUvpaBZHQJNoJyXD3uh1fZQoaAZoCWgPQwhu3GJ+rntwQJSGlFKUaBVL22gWR0CTaOc8TzundX2UKGgGaAloD0MI7pi6K3shcUCUhpRSlGgVS+9oFkdAk2lser+5v3V9lChoBmgJaA9DCBCv6xcs+nFAlIaUUpRoFU0LAWgWR0CTavHf/FR6dX2UKGgGaAloD0MIeQPMfAePcUCUhpRSlGgVS99oFkdAk2yCKR+z+nV9lChoBmgJaA9DCBY1mIbhGHJAlIaUUpRoFUv1aBZHQJNtY7YChex1fZQoaAZoCWgPQwjHSPYIdbByQJSGlFKUaBVL5mgWR0CTbiS88La3dX2UKGgGaAloD0MI5SZqae4CcUCUhpRSlGgVS/xoFkdAk2736yjYZnV9lChoBmgJaA9DCOV9HM1R4nFAlIaUUpRoFUvqaBZHQJNvCwJPZZl1fZQoaAZoCWgPQwhkd4GSgtJyQJSGlFKUaBVLzWgWR0CTb2rlvIfbdX2UKGgGaAloD0MIMUW5ND6ecECUhpRSlGgVTQgBaBZHQJNxgiHIp6R1fZQoaAZoCWgPQwhxHk5gOlVwQJSGlFKUaBVL+WgWR0CTccoUi6g/dX2UKGgGaAloD0MIZyjueBOeb0CUhpRSlGgVS+poFkdAk3JsANoak3V9lChoBmgJaA9DCJ+RCI1g2G1AlIaUUpRoFUvsaBZHQJN0Gqo60Y11fZQoaAZoCWgPQwghPrDj/7JyQJSGlFKUaBVNSwFoFkdAk3QsxsVLz3V9lChoBmgJaA9DCLcLzXWaY29AlIaUUpRoFUvYaBZHQJN0+ur6tT11fZQoaAZoCWgPQwinPpC8c31yQJSGlFKUaBVNEAFoFkdAk3Ufr8iwCHV9lChoBmgJaA9DCCPcZFSZBG1AlIaUUpRoFUvxaBZHQJN32UbDMvB1fZQoaAZoCWgPQwgTntDrz/ZsQJSGlFKUaBVL6GgWR0CTeOVRk3CLdX2UKGgGaAloD0MIF56Xio3mcECUhpRSlGgVS+BoFkdAk3k4/A0sOHV9lChoBmgJaA9DCNUhN8MNqHFAlIaUUpRoFUvyaBZHQJN57WpZOi51fZQoaAZoCWgPQwiIEi15vOFvQJSGlFKUaBVL/WgWR0CTepHX2/SIdX2UKGgGaAloD0MIXCBB8eN4YUCUhpRSlGgVTegDaBZHQJN7V1xKg7J1fZQoaAZoCWgPQwgbguMyrmlyQJSGlFKUaBVLumgWR0CTe55DZ13ddX2UKGgGaAloD0MIAYkmUEQ6cUCUhpRSlGgVS/loFkdAk3vm3BpHqnV9lChoBmgJaA9DCBJpG38iOHFAlIaUUpRoFU0JAWgWR0CTfRje9Ba+dX2UKGgGaAloD0MIEsDN4gUocUCUhpRSlGgVS9loFkdAk31oTGo73nV9lChoBmgJaA9DCDxM++b+zVxAlIaUUpRoFU3oA2gWR0CTfYqdH2AYdX2UKGgGaAloD0MIyHxAoLOtc0CUhpRSlGgVTSsBaBZHQJN9wLhJiAl1fZQoaAZoCWgPQwhI+rSK/vhwQJSGlFKUaBVL/mgWR0CTfef2saKldX2UKGgGaAloD0MIW86luOoEcUCUhpRSlGgVS+5oFkdAk333gpBomHV9lChoBmgJaA9DCKrTgazne3BAlIaUUpRoFUviaBZHQJOS2MZP2wp1fZQoaAZoCWgPQwia7+AnjtZxQJSGlFKUaBVNDAFoFkdAk5MFMdtEX3V9lChoBmgJaA9DCA+4rpjRunBAlIaUUpRoFUv0aBZHQJOTHY150KZ1fZQoaAZoCWgPQwinCHB6F6duQJSGlFKUaBVL3GgWR0CTk0J7sv7FdX2UKGgGaAloD0MI1ZY6yCtScECUhpRSlGgVS+RoFkdAk5QESIxgzHV9lChoBmgJaA9DCJP+XgqPsXFAlIaUUpRoFUviaBZHQJOUob4rSVp1fZQoaAZoCWgPQwhkWwacpTRuQJSGlFKUaBVL2GgWR0CTlM9deIEbdX2UKGgGaAloD0MINV66SQwnXkCUhpRSlGgVTegDaBZHQJOVwouwost1fZQoaAZoCWgPQwj9oC5SKD1xQJSGlFKUaBVNBwFoFkdAk5Xegg5imXV9lChoBmgJaA9DCCR+xRouEkxAlIaUUpRoFUvJaBZHQJOWEChew9t1fZQoaAZoCWgPQwidK0oJQXdxQJSGlFKUaBVL32gWR0CTln1A7gbZdX2UKGgGaAloD0MIfJxpwjbbcUCUhpRSlGgVS/poFkdAk5cHLmp2lnV9lChoBmgJaA9DCPPMy2E3E3JAlIaUUpRoFU0LAWgWR0CTl1lNlAeJdX2UKGgGaAloD0MIfjuJCH8MckCUhpRSlGgVTRoBaBZHQJOXhfnfVI91fZQoaAZoCWgPQwjtn6cBA89uQJSGlFKUaBVNEQFoFkdAk5f1XmvGInV9lChoBmgJaA9DCMR6o1aYliZAlIaUUpRoFUu3aBZHQJOX9Bt1p0x1fZQoaAZoCWgPQwgNNnUeVZxwQJSGlFKUaBVL3GgWR0CTmPMPSUkfdX2UKGgGaAloD0MItdyZCYadb0CUhpRSlGgVS/JoFkdAk5lEPxx1gnV9lChoBmgJaA9DCL4uw3+6d0BAlIaUUpRoFUuyaBZHQJOZY0waisZ1fZQoaAZoCWgPQwiqfqXzoXpwQJSGlFKUaBVL/2gWR0CTmelruYx+dX2UKGgGaAloD0MIRnh7EII8cECUhpRSlGgVTQYBaBZHQJOaywFC9h91fZQoaAZoCWgPQwi/0vnwrF5tQJSGlFKUaBVL6mgWR0CTm6Ujs2NvdX2UKGgGaAloD0MI492RsdodbkCUhpRSlGgVS/BoFkdAk5woP9UCJXV9lChoBmgJaA9DCCfdlsgFnG5AlIaUUpRoFUvkaBZHQJOcSHVPN3Z1fZQoaAZoCWgPQwjqQUEpWplJQJSGlFKUaBVLxGgWR0CTnQUnG828dX2UKGgGaAloD0MI1eqrq0JacUCUhpRSlGgVTRcBaBZHQJOdDUNKAax1fZQoaAZoCWgPQwhhjbPpiGFxQJSGlFKUaBVL8WgWR0CTnTao/A0sdX2UKGgGaAloD0MIoDU//hJncUCUhpRSlGgVS/ZoFkdAk53YrSVnmXV9lChoBmgJaA9DCGrf3F+9dHBAlIaUUpRoFUv7aBZHQJOdzMEA5rB1fZQoaAZoCWgPQwjv4ZLjDsVxQJSGlFKUaBVNAwFoFkdAk56lAZ88cXV9lChoBmgJaA9DCA8PYfw0I2BAlIaUUpRoFU3oA2gWR0CToMttALRbdX2UKGgGaAloD0MIZHWr56SLcUCUhpRSlGgVTSYBaBZHQJOhDxLCemN1fZQoaAZoCWgPQwgyWHGqtWhGQJSGlFKUaBVLxGgWR0CToW3R5TqCdX2UKGgGaAloD0MIxHjNqzqrckCUhpRSlGgVTQ0BaBZHQJOhq7qY7aJ1fZQoaAZoCWgPQwifA8sRMkpxQJSGlFKUaBVL8mgWR0CTofqGUOd5dX2UKGgGaAloD0MIKNTTR6BicECUhpRSlGgVTUEBaBZHQJOivOD8Lrp1fZQoaAZoCWgPQwhgr7DgfpRuQJSGlFKUaBVL0WgWR0CTou/GVAzIdX2UKGgGaAloD0MIJSAm4QIFckCUhpRSlGgVTRkBaBZHQJOlsGLUCq91fZQoaAZoCWgPQwix3qgVpgRuQJSGlFKUaBVL6GgWR0CTpjDbJwKjdX2UKGgGaAloD0MIaOxLNl5FcUCUhpRSlGgVTQkBaBZHQJOmXF1jiGZ1fZQoaAZoCWgPQwh0Yg/tYyhyQJSGlFKUaBVNEgFoFkdAk6avUF0PpnV9lChoBmgJaA9DCESGVbxRPnBAlIaUUpRoFUvXaBZHQJOm0F0PpY91fZQoaAZoCWgPQwiCyY0iq/9xQJSGlFKUaBVNFAFoFkdAk6cHT/hl2HV9lChoBmgJaA9DCMbBpWPOOXBAlIaUUpRoFU0nAWgWR0CTqLgsbvPUdX2UKGgGaAloD0MIlx+4ypMwckCUhpRSlGgVTeABaBZHQJOpXWbwz+F1fZQoaAZoCWgPQwjzWDMyCPZwQJSGlFKUaBVL0WgWR0CTqjIi1RcedX2UKGgGaAloD0MIj+OHSqNVbUCUhpRSlGgVS+5oFkdAk6rUY8+zMXV9lChoBmgJaA9DCPnAjv/CMnFAlIaUUpRoFUv2aBZHQJOq7Hjp9ql1fZQoaAZoCWgPQwjqCUs8oOdxQJSGlFKUaBVL7GgWR0CTq6k4m1IAdX2UKGgGaAloD0MItOTxtDwMcUCUhpRSlGgVS+NoFkdAk6wIhQm/nHV9lChoBmgJaA9DCOLMr+YAynBAlIaUUpRoFUv6aBZHQJOtHc0tRN11fZQoaAZoCWgPQwh8KTxotvdwQJSGlFKUaBVLzGgWR0CTrfvv0AcUdX2UKGgGaAloD0MIPbg7a7cXcUCUhpRSlGgVS9JoFkdAk690fcN6PnV9lChoBmgJaA9DCNbJGYr7E3JAlIaUUpRoFUvsaBZHQJOv+iAUcn51fZQoaAZoCWgPQwioHJPFPRVyQJSGlFKUaBVLzWgWR0CTsXKeCkGidX2UKGgGaAloD0MITU2CNyQqbECUhpRSlGgVTQABaBZHQJOxb7O3UhF1fZQoaAZoCWgPQwgw9fOmIsJvQJSGlFKUaBVNBwFoFkdAk7ImnGbTdHV9lChoBmgJaA9DCOELk6kCfXFAlIaUUpRoFU00AWgWR0CTs3hCdBjXdX2UKGgGaAloD0MIi8VvCmt7ckCUhpRSlGgVTbsBaBZHQJO0NXU6PsB1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.99, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ead8b69fd5cf786f57b3b5d661ea4da74c9f47c6bd895b72aca4468c3cec5055
|
3 |
+
size 147335
|
ppo-LunarLander-v2/data
CHANGED
@@ -4,20 +4,20 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at
|
14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
15 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
-
"_abc_impl": "<_abc_data object at
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
@@ -48,7 +48,7 @@
|
|
48 |
"_num_timesteps_at_start": 0,
|
49 |
"seed": null,
|
50 |
"action_noise": null,
|
51 |
-
"start_time":
|
52 |
"learning_rate": 0.0003,
|
53 |
"tensorboard_log": null,
|
54 |
"lr_schedule": {
|
@@ -57,7 +57,7 @@
|
|
57 |
},
|
58 |
"_last_obs": {
|
59 |
":type:": "<class 'numpy.ndarray'>",
|
60 |
-
":serialized:": "
|
61 |
},
|
62 |
"_last_episode_starts": {
|
63 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -70,7 +70,7 @@
|
|
70 |
"_current_progress_remaining": -0.015808000000000044,
|
71 |
"ep_info_buffer": {
|
72 |
":type:": "<class 'collections.deque'>",
|
73 |
-
":serialized:": "
|
74 |
},
|
75 |
"ep_success_buffer": {
|
76 |
":type:": "<class 'collections.deque'>",
|
@@ -78,7 +78,7 @@
|
|
78 |
},
|
79 |
"_n_updates": 248,
|
80 |
"n_steps": 1024,
|
81 |
-
"gamma": 0.
|
82 |
"gae_lambda": 0.98,
|
83 |
"ent_coef": 0.01,
|
84 |
"vf_coef": 0.5,
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f31a6918d30>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f31a6918dc0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f31a6918e50>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f31a6918ee0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f31a6918f70>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f31a691d040>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f31a691d0d0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f31a691d160>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f31a691d1f0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f31a691d280>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f31a691d310>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f31a691d3a0>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7f31a698ff90>"
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
|
|
48 |
"_num_timesteps_at_start": 0,
|
49 |
"seed": null,
|
50 |
"action_noise": null,
|
51 |
+
"start_time": 1677055515783724709,
|
52 |
"learning_rate": 0.0003,
|
53 |
"tensorboard_log": null,
|
54 |
"lr_schedule": {
|
|
|
57 |
},
|
58 |
"_last_obs": {
|
59 |
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAE1ZJD2blCw/jVpZvbsbzr5cTYE948fdvQAAAAAAAAAAZv1YPcOhYLpab6E7Dzb4uKiXkDtF/++3AACAPwAAgD/NZe48CLGnP5tgxT6UYji//YTaOz/YCz4AAAAAAAAAAE3PfD1IL5e6aEMsNayEiDBSggK6pp9htAAAgD8AAIA/5v0ovT26IbnZsKg8A9vtsxG0lDsFO5yzAAAAAAAAgD9GzCM+eDHiPrFXI77Qoaq+x1pjvDokob0AAAAAAAAAACaMSL6b25W8xrNHu5oFn7n/WQI+AA5zOgAAgD8AAIA/MwxCvl1FPz/Dnia+RwvsvvMPQr5635I9AAAAAAAAAABmVci81N+2PUrx8D1UejK+80XvvJ5B0zwAAAAAAAAAAE0hUz2khAi7inmzPMGpkzxL3SS8AJx+PQAAgD8AAIA/M2sFu9bwLj0CSY0+dQEFvrh3rT3Qb3w8AAAAAAAAAAAArnY8KflrvDIHkzvTcrM8KvnUvfzSjz0AAIA/AACAPzN27j3i2C4+IkQKvTPyg77FC6+8OFmJPQAAAAAAAAAA0EBdvjftCj+JDhA+B2zLvlUOsb3yWII9AAAAAAAAAACmpdA95N6uP50o6D5F7ri+0loHPpKQZz4AAAAAAAAAAGbg/Dz+3i0/XK6YuwJp1r5jkFc8gyaCvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
61 |
},
|
62 |
"_last_episode_starts": {
|
63 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
70 |
"_current_progress_remaining": -0.015808000000000044,
|
71 |
"ep_info_buffer": {
|
72 |
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVPhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIr84xIPuIcUCUhpRSlIwBbJRL84wBdJRHQJNhl5v99+h1fZQoaAZoCWgPQwi3tBoSt1dwQJSGlFKUaBVL82gWR0CTY5xbB42TdX2UKGgGaAloD0MI02pI3KOwcUCUhpRSlGgVS91oFkdAk2OsHWz4UXV9lChoBmgJaA9DCBubHan+OXNAlIaUUpRoFU0IAWgWR0CTZIzWf9P2dX2UKGgGaAloD0MIbqMBvAWkckCUhpRSlGgVS/poFkdAk2THanJkoXV9lChoBmgJaA9DCLSvPEiPt3NAlIaUUpRoFUvVaBZHQJNlYJ2MbWF1fZQoaAZoCWgPQwjb+BOVDTByQJSGlFKUaBVL1WgWR0CTZdPxhDw6dX2UKGgGaAloD0MIZVHYRdFzcECUhpRSlGgVS/5oFkdAk2Y/EOy3TnV9lChoBmgJaA9DCAjnU8dq4nBAlIaUUpRoFU0CAWgWR0CTZtrZJ04jdX2UKGgGaAloD0MIbY/ecB+PbkCUhpRSlGgVS99oFkdAk2cKIN3GGXV9lChoBmgJaA9DCLHeqBUm1HBAlIaUUpRoFUvpaBZHQJNoJyXD3uh1fZQoaAZoCWgPQwhu3GJ+rntwQJSGlFKUaBVL22gWR0CTaOc8TzundX2UKGgGaAloD0MI7pi6K3shcUCUhpRSlGgVS+9oFkdAk2lser+5v3V9lChoBmgJaA9DCBCv6xcs+nFAlIaUUpRoFU0LAWgWR0CTavHf/FR6dX2UKGgGaAloD0MIeQPMfAePcUCUhpRSlGgVS99oFkdAk2yCKR+z+nV9lChoBmgJaA9DCBY1mIbhGHJAlIaUUpRoFUv1aBZHQJNtY7YChex1fZQoaAZoCWgPQwjHSPYIdbByQJSGlFKUaBVL5mgWR0CTbiS88La3dX2UKGgGaAloD0MI5SZqae4CcUCUhpRSlGgVS/xoFkdAk2736yjYZnV9lChoBmgJaA9DCOV9HM1R4nFAlIaUUpRoFUvqaBZHQJNvCwJPZZl1fZQoaAZoCWgPQwhkd4GSgtJyQJSGlFKUaBVLzWgWR0CTb2rlvIfbdX2UKGgGaAloD0MIMUW5ND6ecECUhpRSlGgVTQgBaBZHQJNxgiHIp6R1fZQoaAZoCWgPQwhxHk5gOlVwQJSGlFKUaBVL+WgWR0CTccoUi6g/dX2UKGgGaAloD0MIZyjueBOeb0CUhpRSlGgVS+poFkdAk3JsANoak3V9lChoBmgJaA9DCJ+RCI1g2G1AlIaUUpRoFUvsaBZHQJN0Gqo60Y11fZQoaAZoCWgPQwghPrDj/7JyQJSGlFKUaBVNSwFoFkdAk3QsxsVLz3V9lChoBmgJaA9DCLcLzXWaY29AlIaUUpRoFUvYaBZHQJN0+ur6tT11fZQoaAZoCWgPQwinPpC8c31yQJSGlFKUaBVNEAFoFkdAk3Ufr8iwCHV9lChoBmgJaA9DCCPcZFSZBG1AlIaUUpRoFUvxaBZHQJN32UbDMvB1fZQoaAZoCWgPQwgTntDrz/ZsQJSGlFKUaBVL6GgWR0CTeOVRk3CLdX2UKGgGaAloD0MIF56Xio3mcECUhpRSlGgVS+BoFkdAk3k4/A0sOHV9lChoBmgJaA9DCNUhN8MNqHFAlIaUUpRoFUvyaBZHQJN57WpZOi51fZQoaAZoCWgPQwiIEi15vOFvQJSGlFKUaBVL/WgWR0CTepHX2/SIdX2UKGgGaAloD0MIXCBB8eN4YUCUhpRSlGgVTegDaBZHQJN7V1xKg7J1fZQoaAZoCWgPQwgbguMyrmlyQJSGlFKUaBVLumgWR0CTe55DZ13ddX2UKGgGaAloD0MIAYkmUEQ6cUCUhpRSlGgVS/loFkdAk3vm3BpHqnV9lChoBmgJaA9DCBJpG38iOHFAlIaUUpRoFU0JAWgWR0CTfRje9Ba+dX2UKGgGaAloD0MIEsDN4gUocUCUhpRSlGgVS9loFkdAk31oTGo73nV9lChoBmgJaA9DCDxM++b+zVxAlIaUUpRoFU3oA2gWR0CTfYqdH2AYdX2UKGgGaAloD0MIyHxAoLOtc0CUhpRSlGgVTSsBaBZHQJN9wLhJiAl1fZQoaAZoCWgPQwhI+rSK/vhwQJSGlFKUaBVL/mgWR0CTfef2saKldX2UKGgGaAloD0MIW86luOoEcUCUhpRSlGgVS+5oFkdAk333gpBomHV9lChoBmgJaA9DCKrTgazne3BAlIaUUpRoFUviaBZHQJOS2MZP2wp1fZQoaAZoCWgPQwia7+AnjtZxQJSGlFKUaBVNDAFoFkdAk5MFMdtEX3V9lChoBmgJaA9DCA+4rpjRunBAlIaUUpRoFUv0aBZHQJOTHY150KZ1fZQoaAZoCWgPQwinCHB6F6duQJSGlFKUaBVL3GgWR0CTk0J7sv7FdX2UKGgGaAloD0MI1ZY6yCtScECUhpRSlGgVS+RoFkdAk5QESIxgzHV9lChoBmgJaA9DCJP+XgqPsXFAlIaUUpRoFUviaBZHQJOUob4rSVp1fZQoaAZoCWgPQwhkWwacpTRuQJSGlFKUaBVL2GgWR0CTlM9deIEbdX2UKGgGaAloD0MINV66SQwnXkCUhpRSlGgVTegDaBZHQJOVwouwost1fZQoaAZoCWgPQwj9oC5SKD1xQJSGlFKUaBVNBwFoFkdAk5Xegg5imXV9lChoBmgJaA9DCCR+xRouEkxAlIaUUpRoFUvJaBZHQJOWEChew9t1fZQoaAZoCWgPQwidK0oJQXdxQJSGlFKUaBVL32gWR0CTln1A7gbZdX2UKGgGaAloD0MIfJxpwjbbcUCUhpRSlGgVS/poFkdAk5cHLmp2lnV9lChoBmgJaA9DCPPMy2E3E3JAlIaUUpRoFU0LAWgWR0CTl1lNlAeJdX2UKGgGaAloD0MIfjuJCH8MckCUhpRSlGgVTRoBaBZHQJOXhfnfVI91fZQoaAZoCWgPQwjtn6cBA89uQJSGlFKUaBVNEQFoFkdAk5f1XmvGInV9lChoBmgJaA9DCMR6o1aYliZAlIaUUpRoFUu3aBZHQJOX9Bt1p0x1fZQoaAZoCWgPQwgNNnUeVZxwQJSGlFKUaBVL3GgWR0CTmPMPSUkfdX2UKGgGaAloD0MItdyZCYadb0CUhpRSlGgVS/JoFkdAk5lEPxx1gnV9lChoBmgJaA9DCL4uw3+6d0BAlIaUUpRoFUuyaBZHQJOZY0waisZ1fZQoaAZoCWgPQwiqfqXzoXpwQJSGlFKUaBVL/2gWR0CTmelruYx+dX2UKGgGaAloD0MIRnh7EII8cECUhpRSlGgVTQYBaBZHQJOaywFC9h91fZQoaAZoCWgPQwi/0vnwrF5tQJSGlFKUaBVL6mgWR0CTm6Ujs2NvdX2UKGgGaAloD0MI492RsdodbkCUhpRSlGgVS/BoFkdAk5woP9UCJXV9lChoBmgJaA9DCCfdlsgFnG5AlIaUUpRoFUvkaBZHQJOcSHVPN3Z1fZQoaAZoCWgPQwjqQUEpWplJQJSGlFKUaBVLxGgWR0CTnQUnG828dX2UKGgGaAloD0MI1eqrq0JacUCUhpRSlGgVTRcBaBZHQJOdDUNKAax1fZQoaAZoCWgPQwhhjbPpiGFxQJSGlFKUaBVL8WgWR0CTnTao/A0sdX2UKGgGaAloD0MIoDU//hJncUCUhpRSlGgVS/ZoFkdAk53YrSVnmXV9lChoBmgJaA9DCGrf3F+9dHBAlIaUUpRoFUv7aBZHQJOdzMEA5rB1fZQoaAZoCWgPQwjv4ZLjDsVxQJSGlFKUaBVNAwFoFkdAk56lAZ88cXV9lChoBmgJaA9DCA8PYfw0I2BAlIaUUpRoFU3oA2gWR0CToMttALRbdX2UKGgGaAloD0MIZHWr56SLcUCUhpRSlGgVTSYBaBZHQJOhDxLCemN1fZQoaAZoCWgPQwgyWHGqtWhGQJSGlFKUaBVLxGgWR0CToW3R5TqCdX2UKGgGaAloD0MIxHjNqzqrckCUhpRSlGgVTQ0BaBZHQJOhq7qY7aJ1fZQoaAZoCWgPQwifA8sRMkpxQJSGlFKUaBVL8mgWR0CTofqGUOd5dX2UKGgGaAloD0MIKNTTR6BicECUhpRSlGgVTUEBaBZHQJOivOD8Lrp1fZQoaAZoCWgPQwhgr7DgfpRuQJSGlFKUaBVL0WgWR0CTou/GVAzIdX2UKGgGaAloD0MIJSAm4QIFckCUhpRSlGgVTRkBaBZHQJOlsGLUCq91fZQoaAZoCWgPQwix3qgVpgRuQJSGlFKUaBVL6GgWR0CTpjDbJwKjdX2UKGgGaAloD0MIaOxLNl5FcUCUhpRSlGgVTQkBaBZHQJOmXF1jiGZ1fZQoaAZoCWgPQwh0Yg/tYyhyQJSGlFKUaBVNEgFoFkdAk6avUF0PpnV9lChoBmgJaA9DCESGVbxRPnBAlIaUUpRoFUvXaBZHQJOm0F0PpY91fZQoaAZoCWgPQwiCyY0iq/9xQJSGlFKUaBVNFAFoFkdAk6cHT/hl2HV9lChoBmgJaA9DCMbBpWPOOXBAlIaUUpRoFU0nAWgWR0CTqLgsbvPUdX2UKGgGaAloD0MIlx+4ypMwckCUhpRSlGgVTeABaBZHQJOpXWbwz+F1fZQoaAZoCWgPQwjzWDMyCPZwQJSGlFKUaBVL0WgWR0CTqjIi1RcedX2UKGgGaAloD0MIj+OHSqNVbUCUhpRSlGgVS+5oFkdAk6rUY8+zMXV9lChoBmgJaA9DCPnAjv/CMnFAlIaUUpRoFUv2aBZHQJOq7Hjp9ql1fZQoaAZoCWgPQwjqCUs8oOdxQJSGlFKUaBVL7GgWR0CTq6k4m1IAdX2UKGgGaAloD0MItOTxtDwMcUCUhpRSlGgVS+NoFkdAk6wIhQm/nHV9lChoBmgJaA9DCOLMr+YAynBAlIaUUpRoFUv6aBZHQJOtHc0tRN11fZQoaAZoCWgPQwh8KTxotvdwQJSGlFKUaBVLzGgWR0CTrfvv0AcUdX2UKGgGaAloD0MIPbg7a7cXcUCUhpRSlGgVS9JoFkdAk690fcN6PnV9lChoBmgJaA9DCNbJGYr7E3JAlIaUUpRoFUvsaBZHQJOv+iAUcn51fZQoaAZoCWgPQwioHJPFPRVyQJSGlFKUaBVLzWgWR0CTsXKeCkGidX2UKGgGaAloD0MITU2CNyQqbECUhpRSlGgVTQABaBZHQJOxb7O3UhF1fZQoaAZoCWgPQwgw9fOmIsJvQJSGlFKUaBVNBwFoFkdAk7ImnGbTdHV9lChoBmgJaA9DCOELk6kCfXFAlIaUUpRoFU00AWgWR0CTs3hCdBjXdX2UKGgGaAloD0MIi8VvCmt7ckCUhpRSlGgVTbsBaBZHQJO0NXU6PsB1ZS4="
|
74 |
},
|
75 |
"ep_success_buffer": {
|
76 |
":type:": "<class 'collections.deque'>",
|
|
|
78 |
},
|
79 |
"_n_updates": 248,
|
80 |
"n_steps": 1024,
|
81 |
+
"gamma": 0.99,
|
82 |
"gae_lambda": 0.98,
|
83 |
"ent_coef": 0.01,
|
84 |
"vf_coef": 0.5,
|
ppo-LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 87929
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e3389ee215193e93dd00d1fcef01cbe68186dfbfb43276c963825591dcab16c6
|
3 |
size 87929
|
ppo-LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43393
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7cfe9d16f8a3be87a5ee9f128fa5bf702e37b46e31f7bd8f1bf7e7b915c9fa0d
|
3 |
size 43393
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 248.04967279960783, "std_reward": 44.30206389354817, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-22T09:06:43.060633"}
|