Gabcsor commited on
Commit
6c42528
1 Parent(s): 15d6c0e

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 251.46 +/- 53.82
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f92b4246d30>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f92b4246dc0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f92b4246e50>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f92b4246ee0>", "_build": "<function ActorCriticPolicy._build at 0x7f92b4246f70>", "forward": "<function ActorCriticPolicy.forward at 0x7f92b424a040>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f92b424a0d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f92b424a160>", "_predict": "<function ActorCriticPolicy._predict at 0x7f92b424a1f0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f92b424a280>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f92b424a310>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f92b424a3a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f92b4241d20>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1676990888049088737, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAI0DzD2kMAu7k2USPKdiGjyBcAC8JqcKPQAAgD8AAIA/zSI8PSa3OT/kDpo995+ZvnETBz0gUEi9AAAAAAAAAACaORM99mB+unD02zTG9M0wr7X7OlXxH7QAAIA/AACAP6blHD79HAE+Q8vXvVlJkb7kiyk9evIhPAAAAAAAAAAAGqDnPY/FaLx+DCS95NplvWJ02rxmFH2+AACAPwAAgD8gb4K+lM0MP3hDST7x5q++ho1ou5pZXj0AAAAAAAAAAGbcCzwkWAs+tbKVvTNDh75NN4S9Kf6UPQAAAAAAAAAAmsZ+vT7SqT9NVu29BV+5vvbiRr47Fp+9AAAAAAAAAAAd74c+VuPhPtcYOL4+Ok++pngNPj0yU74AAAAAAAAAANo9/708TJs+5NIKPkAEir6AZMq8GSgJPQAAAAAAAAAAZmIfvE2Esz9wGqK+kBYbvpG9sjtfKxa7AAAAAAAAAABmUu+7GdCiPhrB3r0ZM1u+MY6IvctM/r0AAAAAAAAAAJpJgLr2nCq6kkcFObOnFLP7B3i67m0auAAAgD8AAIA/MxpJvSnUNT+Ic/M9n3/ovvn2ID28q0c9AAAAAAAAAADmr9W9AVitPzV7kb5BvXm+o/I7vgIYCr0AAAAAAAAAAOYeQz32OBs5QwvstXluT7EuA+A74WkgNQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVXRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI3xtDAPCMbkCUhpRSlIwBbJRNTgGMAXSUR0Cd0SD3dsSCdX2UKGgGaAloD0MI/Io1XGTlcUCUhpRSlGgVS/BoFkdAndNYJu2qk3V9lChoBmgJaA9DCLA8SE/RcXJAlIaUUpRoFU0RAWgWR0Cd1KEx7AtWdX2UKGgGaAloD0MILbDHRAqEcUCUhpRSlGgVS/hoFkdAndUTXjENv3V9lChoBmgJaA9DCJCeIoeIZVRAlIaUUpRoFUvMaBZHQJ3VjIFNcnp1fZQoaAZoCWgPQwjL2NDNfrByQJSGlFKUaBVNHgFoFkdAndcSmMwUQHV9lChoBmgJaA9DCDFAogmUW3JAlIaUUpRoFUv1aBZHQJ3XbUy57PZ1fZQoaAZoCWgPQwhAL9y5cCFwQJSGlFKUaBVNDQFoFkdAndg3ZK3/gnV9lChoBmgJaA9DCP65aMg4tnFAlIaUUpRoFU0cAWgWR0Cd2aBpHqeLdX2UKGgGaAloD0MIlgoqqn7+bkCUhpRSlGgVTQ0BaBZHQJ3aBk6Lfk51fZQoaAZoCWgPQwjm6VxRyh1wQJSGlFKUaBVNMwFoFkdAndoSqU/wAnV9lChoBmgJaA9DCHZUNUHU/3BAlIaUUpRoFU0NAWgWR0Cd20nuRcNZdX2UKGgGaAloD0MIQMBatevKcECUhpRSlGgVTSkBaBZHQJ3bxTcZccF1fZQoaAZoCWgPQwhcVmEzgD9xQJSGlFKUaBVNJwFoFkdAndv61LJ0XHV9lChoBmgJaA9DCCL7IMuC4m9AlIaUUpRoFU1CAWgWR0Cd3PZ39rGjdX2UKGgGaAloD0MI8KSFyyr0OkCUhpRSlGgVS9BoFkdAnd1qdhAnlXV9lChoBmgJaA9DCBXJVwIpKnBAlIaUUpRoFUv1aBZHQJ3e8PsiSq51fZQoaAZoCWgPQwjZPXlYaKZyQJSGlFKUaBVNUAFoFkdAnd8nBHkLhXV9lChoBmgJaA9DCKBU+3Q8W21AlIaUUpRoFU0FAWgWR0Cd39Tkhib2dX2UKGgGaAloD0MIxty1hHxDcECUhpRSlGgVS+9oFkdAneAXZwn6VXV9lChoBmgJaA9DCP0xrU2joXFAlIaUUpRoFU07AWgWR0Cd4CQ/HHWCdX2UKGgGaAloD0MIsI9OXXm2bUCUhpRSlGgVTbkBaBZHQJ3gv7O3UhF1fZQoaAZoCWgPQwgA/b5/Mw1xQJSGlFKUaBVL3GgWR0Cd4PaouPFOdX2UKGgGaAloD0MIIxEawQaQcUCUhpRSlGgVTRoBaBZHQJ3hdXlr/Kh1fZQoaAZoCWgPQwgLDFndqohxQJSGlFKUaBVL8GgWR0Cd4cXTmW+odX2UKGgGaAloD0MI36Y/+xG/bUCUhpRSlGgVTUEBaBZHQJ3jEfJV81J1fZQoaAZoCWgPQwizeofbIa1yQJSGlFKUaBVL/mgWR0Cd42WweNkwdX2UKGgGaAloD0MIUU8fgT9LbkCUhpRSlGgVTVQBaBZHQJ3kzFefI0Z1fZQoaAZoCWgPQwjS4SGM38VzQJSGlFKUaBVNJAFoFkdAneTSyyD7InV9lChoBmgJaA9DCG0a22tB+3BAlIaUUpRoFU0CAWgWR0Cd5V66reZYdX2UKGgGaAloD0MIuti0UgiQckCUhpRSlGgVTR0BaBZHQJ3lrGrCFbp1fZQoaAZoCWgPQwgXZqGdUw1xQJSGlFKUaBVL+WgWR0Cd5q+lj3EidX2UKGgGaAloD0MIQiRDji3Pa0CUhpRSlGgVTQcBaBZHQJ3m8NDtw711fZQoaAZoCWgPQwibjgBu1j9zQJSGlFKUaBVL+mgWR0Cd52PGhmGudX2UKGgGaAloD0MIICV2bW8eb8CUhpRSlGgVTZEBaBZHQJ3nkV1wHZ91fZQoaAZoCWgPQwhzSkBMgqJxQJSGlFKUaBVL/2gWR0Cd58exwAEMdX2UKGgGaAloD0MI0o4bfvdFcUCUhpRSlGgVTRwBaBZHQJ3ojWI42jx1fZQoaAZoCWgPQwiIZMix9clwQJSGlFKUaBVNDgFoFkdAnekQJ9iMHnV9lChoBmgJaA9DCObN4VptZm9AlIaUUpRoFU0HAWgWR0Cd6WCFK02MdX2UKGgGaAloD0MIv36IDZb7b0CUhpRSlGgVTUUBaBZHQJ3qijHn2Zl1fZQoaAZoCWgPQwjZzYx+NKdwQJSGlFKUaBVNBwFoFkdAnesj72tdRnV9lChoBmgJaA9DCANckC3L/HFAlIaUUpRoFUvuaBZHQJ3sOiKziS91fZQoaAZoCWgPQwgO9iaG5LtvQJSGlFKUaBVL/mgWR0CeAJhd+ocadX2UKGgGaAloD0MISG+4jxwacUCUhpRSlGgVTTQBaBZHQJ4A9CngpBp1fZQoaAZoCWgPQwir7Sb4pvhvQJSGlFKUaBVL9WgWR0CeAUjzZpSKdX2UKGgGaAloD0MIUcHhBRGOUkCUhpRSlGgVS8hoFkdAngIPQ8fV7XV9lChoBmgJaA9DCPQ1y2WjBHBAlIaUUpRoFU0EAWgWR0CeAuyzollcdX2UKGgGaAloD0MIE7U0twIackCUhpRSlGgVTUgBaBZHQJ4EFXHR1HR1fZQoaAZoCWgPQwis4SL3tNNxQJSGlFKUaBVNHQFoFkdAngR8ejmCAnV9lChoBmgJaA9DCKGDLuHQ729AlIaUUpRoFU0ZAWgWR0CeBO446wMZdX2UKGgGaAloD0MIVg3C3O5TcUCUhpRSlGgVTRQBaBZHQJ4E+wgTyrh1fZQoaAZoCWgPQwgYfJqTF5NxQJSGlFKUaBVNLgFoFkdAngf5+YtxuXV9lChoBmgJaA9DCOyIQzZQaHBAlIaUUpRoFU0uAWgWR0CeCONlAeJYdX2UKGgGaAloD0MIlEvjF96ibkCUhpRSlGgVTQcBaBZHQJ4JSdvsJIF1fZQoaAZoCWgPQwhinwCKEV5xQJSGlFKUaBVNNQFoFkdAngm7ZzxPPHV9lChoBmgJaA9DCOKS407pz29AlIaUUpRoFUv2aBZHQJ4LhSk0rLB1fZQoaAZoCWgPQwgaGeQuwstwQJSGlFKUaBVNFAFoFkdAngxNmUW2w3V9lChoBmgJaA9DCFgAUwYOsnFAlIaUUpRoFU0/AWgWR0CeDOHNHH3ldX2UKGgGaAloD0MIkuumlNcmb0CUhpRSlGgVS99oFkdAng3NWp6yB3V9lChoBmgJaA9DCIo+H2VEw25AlIaUUpRoFU0SAWgWR0CeDfZ+QU5/dX2UKGgGaAloD0MIrHR3nc2McECUhpRSlGgVTRQBaBZHQJ4PQwTM7lt1fZQoaAZoCWgPQwiM8szLYbZxQJSGlFKUaBVL9mgWR0CeEKW9DhLodX2UKGgGaAloD0MIDvRQ2wbYckCUhpRSlGgVTQUBaBZHQJ4RAophF3J1fZQoaAZoCWgPQwigbqDAOwBUQJSGlFKUaBVLpWgWR0CeERBy0a60dX2UKGgGaAloD0MI1SR4Q5qDbECUhpRSlGgVS/9oFkdAnhGGvKU3XXV9lChoBmgJaA9DCMJR8uocKHBAlIaUUpRoFU0MAWgWR0CeEicXFcY7dX2UKGgGaAloD0MIiUD1D6KpckCUhpRSlGgVS/9oFkdAnhSFlf7aZnV9lChoBmgJaA9DCFJhbCHI+XBAlIaUUpRoFU0fAWgWR0CeF4dfLLZBdX2UKGgGaAloD0MIsmfPZeoucECUhpRSlGgVTRgBaBZHQJ4XsN7SiM51fZQoaAZoCWgPQwjtmpDWGPllQJSGlFKUaBVNXQNoFkdAnhjPSH/LknV9lChoBmgJaA9DCLqgvmWOFHFAlIaUUpRoFUvvaBZHQJ4Y8cABDG91fZQoaAZoCWgPQwiF7Sdj/ItxQJSGlFKUaBVNCgFoFkdAnhj6L4vexnV9lChoBmgJaA9DCIIC7+QTKnJAlIaUUpRoFU0EAWgWR0CeGTqlP8AJdX2UKGgGaAloD0MIPE88Z4uPb0CUhpRSlGgVS/9oFkdAnhoaCxu89XV9lChoBmgJaA9DCK1RD9Fop3JAlIaUUpRoFUv3aBZHQJ4bmvq1PWR1fZQoaAZoCWgPQwhv9gfKLaJwQJSGlFKUaBVNMQFoFkdAnhuuBMBZIXV9lChoBmgJaA9DCMg/M4hPt3FAlIaUUpRoFU0WAWgWR0CeG7fa6BiDdX2UKGgGaAloD0MIiesYV5w6cUCUhpRSlGgVS/hoFkdAnhwz7Q9idHV9lChoBmgJaA9DCKhzRSkhRXFAlIaUUpRoFU0GAWgWR0CeHFcpb2UTdX2UKGgGaAloD0MIwqG3eHgscUCUhpRSlGgVTRwBaBZHQJ4c9IFvAGl1fZQoaAZoCWgPQwi9qUiFcV9wQJSGlFKUaBVNDAFoFkdAnh02UKRdQnV9lChoBmgJaA9DCAn5oGczLnBAlIaUUpRoFU0gAWgWR0CeH1Y+jdpJdX2UKGgGaAloD0MIJ6Q1Bp1UQ0CUhpRSlGgVS8toFkdAnh+Y150KZ3V9lChoBmgJaA9DCDyfAfXmz3FAlIaUUpRoFUv+aBZHQJ4gGEAYHgR1fZQoaAZoCWgPQwgOhc/WgTFxQJSGlFKUaBVL/2gWR0CeIDXpW3jNdX2UKGgGaAloD0MIWB8PfXd2Z0CUhpRSlGgVTeYCaBZHQJ4ggYZVGTd1fZQoaAZoCWgPQwiKyLCKt2RyQJSGlFKUaBVL92gWR0CeILGZNO/MdX2UKGgGaAloD0MIcJaS5eTGcUCUhpRSlGgVS/hoFkdAniHRR/EwWXV9lChoBmgJaA9DCBUA4xk0A3FAlIaUUpRoFU0kAWgWR0CeIejj7yhBdX2UKGgGaAloD0MIc0f/yzXAckCUhpRSlGgVTToBaBZHQJ4ioXtShrZ1fZQoaAZoCWgPQwgNGY9SyftyQJSGlFKUaBVL/WgWR0CeI09+w1R+dX2UKGgGaAloD0MI9YHknQONckCUhpRSlGgVTQwBaBZHQJ4jrwe/5+J1fZQoaAZoCWgPQwgKZeHr65twQJSGlFKUaBVNDAFoFkdAniO/9gnc+XV9lChoBmgJaA9DCBVwz/OnLnBAlIaUUpRoFUvzaBZHQJ4kcX40uUV1fZQoaAZoCWgPQwgv3o/bL91wQJSGlFKUaBVNIQFoFkdAniWKxHG0eHV9lChoBmgJaA9DCPjEOlW+33BAlIaUUpRoFU08AWgWR0CeJZzOX3QEdX2UKGgGaAloD0MIAoI5erwYckCUhpRSlGgVTUEBaBZHQJ4l4zBRAKR1fZQoaAZoCWgPQwhDxw4qcdFzQJSGlFKUaBVL8WgWR0CeJxKlYU35dX2UKGgGaAloD0MIkiOdgZFOb0CUhpRSlGgVS/FoFkdAnicwBtDUmXV9lChoBmgJaA9DCLQ8D+5O+nBAlIaUUpRoFU0fAWgWR0CeJ/rp7kXDdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eeeaed707f29c44c91b63c121842c9052214724e08613c152858780385f003d4
3
+ size 147376
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f92b4246d30>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f92b4246dc0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f92b4246e50>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f92b4246ee0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f92b4246f70>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f92b424a040>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f92b424a0d0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f92b424a160>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f92b424a1f0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f92b424a280>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f92b424a310>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f92b424a3a0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f92b4241d20>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 1015808,
47
+ "_total_timesteps": 1000000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1676990888049088737,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAI0DzD2kMAu7k2USPKdiGjyBcAC8JqcKPQAAgD8AAIA/zSI8PSa3OT/kDpo995+ZvnETBz0gUEi9AAAAAAAAAACaORM99mB+unD02zTG9M0wr7X7OlXxH7QAAIA/AACAP6blHD79HAE+Q8vXvVlJkb7kiyk9evIhPAAAAAAAAAAAGqDnPY/FaLx+DCS95NplvWJ02rxmFH2+AACAPwAAgD8gb4K+lM0MP3hDST7x5q++ho1ou5pZXj0AAAAAAAAAAGbcCzwkWAs+tbKVvTNDh75NN4S9Kf6UPQAAAAAAAAAAmsZ+vT7SqT9NVu29BV+5vvbiRr47Fp+9AAAAAAAAAAAd74c+VuPhPtcYOL4+Ok++pngNPj0yU74AAAAAAAAAANo9/708TJs+5NIKPkAEir6AZMq8GSgJPQAAAAAAAAAAZmIfvE2Esz9wGqK+kBYbvpG9sjtfKxa7AAAAAAAAAABmUu+7GdCiPhrB3r0ZM1u+MY6IvctM/r0AAAAAAAAAAJpJgLr2nCq6kkcFObOnFLP7B3i67m0auAAAgD8AAIA/MxpJvSnUNT+Ic/M9n3/ovvn2ID28q0c9AAAAAAAAAADmr9W9AVitPzV7kb5BvXm+o/I7vgIYCr0AAAAAAAAAAOYeQz32OBs5QwvstXluT7EuA+A74WkgNQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.015808000000000044,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVXRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI3xtDAPCMbkCUhpRSlIwBbJRNTgGMAXSUR0Cd0SD3dsSCdX2UKGgGaAloD0MI/Io1XGTlcUCUhpRSlGgVS/BoFkdAndNYJu2qk3V9lChoBmgJaA9DCLA8SE/RcXJAlIaUUpRoFU0RAWgWR0Cd1KEx7AtWdX2UKGgGaAloD0MILbDHRAqEcUCUhpRSlGgVS/hoFkdAndUTXjENv3V9lChoBmgJaA9DCJCeIoeIZVRAlIaUUpRoFUvMaBZHQJ3VjIFNcnp1fZQoaAZoCWgPQwjL2NDNfrByQJSGlFKUaBVNHgFoFkdAndcSmMwUQHV9lChoBmgJaA9DCDFAogmUW3JAlIaUUpRoFUv1aBZHQJ3XbUy57PZ1fZQoaAZoCWgPQwhAL9y5cCFwQJSGlFKUaBVNDQFoFkdAndg3ZK3/gnV9lChoBmgJaA9DCP65aMg4tnFAlIaUUpRoFU0cAWgWR0Cd2aBpHqeLdX2UKGgGaAloD0MIlgoqqn7+bkCUhpRSlGgVTQ0BaBZHQJ3aBk6Lfk51fZQoaAZoCWgPQwjm6VxRyh1wQJSGlFKUaBVNMwFoFkdAndoSqU/wAnV9lChoBmgJaA9DCHZUNUHU/3BAlIaUUpRoFU0NAWgWR0Cd20nuRcNZdX2UKGgGaAloD0MIQMBatevKcECUhpRSlGgVTSkBaBZHQJ3bxTcZccF1fZQoaAZoCWgPQwhcVmEzgD9xQJSGlFKUaBVNJwFoFkdAndv61LJ0XHV9lChoBmgJaA9DCCL7IMuC4m9AlIaUUpRoFU1CAWgWR0Cd3PZ39rGjdX2UKGgGaAloD0MI8KSFyyr0OkCUhpRSlGgVS9BoFkdAnd1qdhAnlXV9lChoBmgJaA9DCBXJVwIpKnBAlIaUUpRoFUv1aBZHQJ3e8PsiSq51fZQoaAZoCWgPQwjZPXlYaKZyQJSGlFKUaBVNUAFoFkdAnd8nBHkLhXV9lChoBmgJaA9DCKBU+3Q8W21AlIaUUpRoFU0FAWgWR0Cd39Tkhib2dX2UKGgGaAloD0MIxty1hHxDcECUhpRSlGgVS+9oFkdAneAXZwn6VXV9lChoBmgJaA9DCP0xrU2joXFAlIaUUpRoFU07AWgWR0Cd4CQ/HHWCdX2UKGgGaAloD0MIsI9OXXm2bUCUhpRSlGgVTbkBaBZHQJ3gv7O3UhF1fZQoaAZoCWgPQwgA/b5/Mw1xQJSGlFKUaBVL3GgWR0Cd4PaouPFOdX2UKGgGaAloD0MIIxEawQaQcUCUhpRSlGgVTRoBaBZHQJ3hdXlr/Kh1fZQoaAZoCWgPQwgLDFndqohxQJSGlFKUaBVL8GgWR0Cd4cXTmW+odX2UKGgGaAloD0MI36Y/+xG/bUCUhpRSlGgVTUEBaBZHQJ3jEfJV81J1fZQoaAZoCWgPQwizeofbIa1yQJSGlFKUaBVL/mgWR0Cd42WweNkwdX2UKGgGaAloD0MIUU8fgT9LbkCUhpRSlGgVTVQBaBZHQJ3kzFefI0Z1fZQoaAZoCWgPQwjS4SGM38VzQJSGlFKUaBVNJAFoFkdAneTSyyD7InV9lChoBmgJaA9DCG0a22tB+3BAlIaUUpRoFU0CAWgWR0Cd5V66reZYdX2UKGgGaAloD0MIuti0UgiQckCUhpRSlGgVTR0BaBZHQJ3lrGrCFbp1fZQoaAZoCWgPQwgXZqGdUw1xQJSGlFKUaBVL+WgWR0Cd5q+lj3EidX2UKGgGaAloD0MIQiRDji3Pa0CUhpRSlGgVTQcBaBZHQJ3m8NDtw711fZQoaAZoCWgPQwibjgBu1j9zQJSGlFKUaBVL+mgWR0Cd52PGhmGudX2UKGgGaAloD0MIICV2bW8eb8CUhpRSlGgVTZEBaBZHQJ3nkV1wHZ91fZQoaAZoCWgPQwhzSkBMgqJxQJSGlFKUaBVL/2gWR0Cd58exwAEMdX2UKGgGaAloD0MI0o4bfvdFcUCUhpRSlGgVTRwBaBZHQJ3ojWI42jx1fZQoaAZoCWgPQwiIZMix9clwQJSGlFKUaBVNDgFoFkdAnekQJ9iMHnV9lChoBmgJaA9DCObN4VptZm9AlIaUUpRoFU0HAWgWR0Cd6WCFK02MdX2UKGgGaAloD0MIv36IDZb7b0CUhpRSlGgVTUUBaBZHQJ3qijHn2Zl1fZQoaAZoCWgPQwjZzYx+NKdwQJSGlFKUaBVNBwFoFkdAnesj72tdRnV9lChoBmgJaA9DCANckC3L/HFAlIaUUpRoFUvuaBZHQJ3sOiKziS91fZQoaAZoCWgPQwgO9iaG5LtvQJSGlFKUaBVL/mgWR0CeAJhd+ocadX2UKGgGaAloD0MISG+4jxwacUCUhpRSlGgVTTQBaBZHQJ4A9CngpBp1fZQoaAZoCWgPQwir7Sb4pvhvQJSGlFKUaBVL9WgWR0CeAUjzZpSKdX2UKGgGaAloD0MIUcHhBRGOUkCUhpRSlGgVS8hoFkdAngIPQ8fV7XV9lChoBmgJaA9DCPQ1y2WjBHBAlIaUUpRoFU0EAWgWR0CeAuyzollcdX2UKGgGaAloD0MIE7U0twIackCUhpRSlGgVTUgBaBZHQJ4EFXHR1HR1fZQoaAZoCWgPQwis4SL3tNNxQJSGlFKUaBVNHQFoFkdAngR8ejmCAnV9lChoBmgJaA9DCKGDLuHQ729AlIaUUpRoFU0ZAWgWR0CeBO446wMZdX2UKGgGaAloD0MIVg3C3O5TcUCUhpRSlGgVTRQBaBZHQJ4E+wgTyrh1fZQoaAZoCWgPQwgYfJqTF5NxQJSGlFKUaBVNLgFoFkdAngf5+YtxuXV9lChoBmgJaA9DCOyIQzZQaHBAlIaUUpRoFU0uAWgWR0CeCONlAeJYdX2UKGgGaAloD0MIlEvjF96ibkCUhpRSlGgVTQcBaBZHQJ4JSdvsJIF1fZQoaAZoCWgPQwhinwCKEV5xQJSGlFKUaBVNNQFoFkdAngm7ZzxPPHV9lChoBmgJaA9DCOKS407pz29AlIaUUpRoFUv2aBZHQJ4LhSk0rLB1fZQoaAZoCWgPQwgaGeQuwstwQJSGlFKUaBVNFAFoFkdAngxNmUW2w3V9lChoBmgJaA9DCFgAUwYOsnFAlIaUUpRoFU0/AWgWR0CeDOHNHH3ldX2UKGgGaAloD0MIkuumlNcmb0CUhpRSlGgVS99oFkdAng3NWp6yB3V9lChoBmgJaA9DCIo+H2VEw25AlIaUUpRoFU0SAWgWR0CeDfZ+QU5/dX2UKGgGaAloD0MIrHR3nc2McECUhpRSlGgVTRQBaBZHQJ4PQwTM7lt1fZQoaAZoCWgPQwiM8szLYbZxQJSGlFKUaBVL9mgWR0CeEKW9DhLodX2UKGgGaAloD0MIDvRQ2wbYckCUhpRSlGgVTQUBaBZHQJ4RAophF3J1fZQoaAZoCWgPQwigbqDAOwBUQJSGlFKUaBVLpWgWR0CeERBy0a60dX2UKGgGaAloD0MI1SR4Q5qDbECUhpRSlGgVS/9oFkdAnhGGvKU3XXV9lChoBmgJaA9DCMJR8uocKHBAlIaUUpRoFU0MAWgWR0CeEicXFcY7dX2UKGgGaAloD0MIiUD1D6KpckCUhpRSlGgVS/9oFkdAnhSFlf7aZnV9lChoBmgJaA9DCFJhbCHI+XBAlIaUUpRoFU0fAWgWR0CeF4dfLLZBdX2UKGgGaAloD0MIsmfPZeoucECUhpRSlGgVTRgBaBZHQJ4XsN7SiM51fZQoaAZoCWgPQwjtmpDWGPllQJSGlFKUaBVNXQNoFkdAnhjPSH/LknV9lChoBmgJaA9DCLqgvmWOFHFAlIaUUpRoFUvvaBZHQJ4Y8cABDG91fZQoaAZoCWgPQwiF7Sdj/ItxQJSGlFKUaBVNCgFoFkdAnhj6L4vexnV9lChoBmgJaA9DCIIC7+QTKnJAlIaUUpRoFU0EAWgWR0CeGTqlP8AJdX2UKGgGaAloD0MIPE88Z4uPb0CUhpRSlGgVS/9oFkdAnhoaCxu89XV9lChoBmgJaA9DCK1RD9Fop3JAlIaUUpRoFUv3aBZHQJ4bmvq1PWR1fZQoaAZoCWgPQwhv9gfKLaJwQJSGlFKUaBVNMQFoFkdAnhuuBMBZIXV9lChoBmgJaA9DCMg/M4hPt3FAlIaUUpRoFU0WAWgWR0CeG7fa6BiDdX2UKGgGaAloD0MIiesYV5w6cUCUhpRSlGgVS/hoFkdAnhwz7Q9idHV9lChoBmgJaA9DCKhzRSkhRXFAlIaUUpRoFU0GAWgWR0CeHFcpb2UTdX2UKGgGaAloD0MIwqG3eHgscUCUhpRSlGgVTRwBaBZHQJ4c9IFvAGl1fZQoaAZoCWgPQwi9qUiFcV9wQJSGlFKUaBVNDAFoFkdAnh02UKRdQnV9lChoBmgJaA9DCAn5oGczLnBAlIaUUpRoFU0gAWgWR0CeH1Y+jdpJdX2UKGgGaAloD0MIJ6Q1Bp1UQ0CUhpRSlGgVS8toFkdAnh+Y150KZ3V9lChoBmgJaA9DCDyfAfXmz3FAlIaUUpRoFUv+aBZHQJ4gGEAYHgR1fZQoaAZoCWgPQwgOhc/WgTFxQJSGlFKUaBVL/2gWR0CeIDXpW3jNdX2UKGgGaAloD0MIWB8PfXd2Z0CUhpRSlGgVTeYCaBZHQJ4ggYZVGTd1fZQoaAZoCWgPQwiKyLCKt2RyQJSGlFKUaBVL92gWR0CeILGZNO/MdX2UKGgGaAloD0MIcJaS5eTGcUCUhpRSlGgVS/hoFkdAniHRR/EwWXV9lChoBmgJaA9DCBUA4xk0A3FAlIaUUpRoFU0kAWgWR0CeIejj7yhBdX2UKGgGaAloD0MIc0f/yzXAckCUhpRSlGgVTToBaBZHQJ4ioXtShrZ1fZQoaAZoCWgPQwgNGY9SyftyQJSGlFKUaBVL/WgWR0CeI09+w1R+dX2UKGgGaAloD0MI9YHknQONckCUhpRSlGgVTQwBaBZHQJ4jrwe/5+J1fZQoaAZoCWgPQwgKZeHr65twQJSGlFKUaBVNDAFoFkdAniO/9gnc+XV9lChoBmgJaA9DCBVwz/OnLnBAlIaUUpRoFUvzaBZHQJ4kcX40uUV1fZQoaAZoCWgPQwgv3o/bL91wQJSGlFKUaBVNIQFoFkdAniWKxHG0eHV9lChoBmgJaA9DCPjEOlW+33BAlIaUUpRoFU08AWgWR0CeJZzOX3QEdX2UKGgGaAloD0MIAoI5erwYckCUhpRSlGgVTUEBaBZHQJ4l4zBRAKR1fZQoaAZoCWgPQwhDxw4qcdFzQJSGlFKUaBVL8WgWR0CeJxKlYU35dX2UKGgGaAloD0MIkiOdgZFOb0CUhpRSlGgVS/FoFkdAnicwBtDUmXV9lChoBmgJaA9DCLQ8D+5O+nBAlIaUUpRoFU0fAWgWR0CeJ/rp7kXDdWUu"
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 248,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4304c166d05bda9a969091c8cd1ee46cacaf8b21326d5ca95284f425fb2d8145
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aca66c7fbb5c396e9cceaed8792a09b52f07717a4ef98c5360da40033aa6dc3d
3
+ size 43393
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
replay.mp4 ADDED
Binary file (232 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 251.46292022174543, "std_reward": 53.81651608674628, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-21T15:36:42.835183"}