metadata
tags:
- autotrain
- text-classification
language:
- unk
widget:
- text: I love AutoTrain
datasets:
- GRPUI/autotrain-data-sgugit-model-v3
co2_eq_emissions:
emissions: 0.7899863264115066
Model Trained Using AutoTrain
- Problem type: Multi-class Classification
- Model ID: 91416144506
- CO2 Emissions (in grams): 0.7900
Validation Metrics
- Loss: 0.020
- Accuracy: 1.000
- Macro F1: 1.000
- Micro F1: 1.000
- Weighted F1: 1.000
- Macro Precision: 1.000
- Micro Precision: 1.000
- Weighted Precision: 1.000
- Macro Recall: 1.000
- Micro Recall: 1.000
- Weighted Recall: 1.000
Usage
You can use cURL to access this model:
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/GRPUI/autotrain-sgugit-model-v3-91416144506
Or Python API:
from transformers import AutoModelForSequenceClassification, AutoTokenizer
model = AutoModelForSequenceClassification.from_pretrained("GRPUI/autotrain-sgugit-model-v3-91416144506", use_auth_token=True)
tokenizer = AutoTokenizer.from_pretrained("GRPUI/autotrain-sgugit-model-v3-91416144506", use_auth_token=True)
inputs = tokenizer("I love AutoTrain", return_tensors="pt")
outputs = model(**inputs)