PrateritumGPT / PrateritumGPT.py
GPT007's picture
Upload PrateritumGPT.py
13d61ff verified
raw
history blame
4.98 kB
import csv
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader
from torch.nn.utils.rnn import pad_sequence
import math
tokens = list("azertyuiopqsdfghjklmwxcvbnäüöß—– ")
tokensdict = {}
for i in range(len(tokens)):
tokensdict.update({tokens[i]: [0] * i + [0] * (len(tokens) - (i + 1))})
# Ouvrir le fichier CSV
with open("C:\\Users\\marc2\\Downloads\\7eaaf0e22461b505c749e268c0b72bc4-12ebe211a929f039791dfeaa1a019b64cadddaf1\\7eaaf0e22461b505c749e268c0b72bc4-12ebe211a929f039791dfeaa1a019b64cadddaf1\\top-german-verbs.csv", 'r', encoding="utf-8") as file:
# Créer un objet lecteur CSV
reader = [i for i in csv.reader(file)][1:]
class CSVDataset(Dataset):
def __init__(self, features, labels):
self.features = features
self.labels = labels
def __len__(self):
return len(self.features)
def __getitem__(self, idx):
sample = self.features[idx], self.labels[idx]
return sample
# Supposons que vous ayez vos données sous forme de listes
features = []
labels = []
for i in reader:
k = []
for j in i[2]:
k += [tokens.index(j)]
k += [len(tokens) + 1] * (25 - len(k))
features += [torch.Tensor(k)]
k = []
for j in i[8]:
k += [tokens.index(j)]
k += [len(tokens) + 1] * (25 - len(k))
labels += [torch.Tensor(k)]
MyDataset = CSVDataset(features=features, labels=labels)
class TransformerModel(nn.Module):
def __init__(self, vocab_size, emb_dim, nhead, num_encoder_layers, num_decoder_layers, dim_feedforward, dropout=0.1):
super().__init__()
self.custom_embedding = nn.Embedding(vocab_size, emb_dim)
self.pos_encoder = PositionalEncoding(emb_dim, dropout)
encoder_layer = nn.TransformerEncoderLayer(emb_dim, nhead, dim_feedforward, dropout)
self.transformer_encoder = nn.TransformerEncoder(encoder_layer, num_encoder_layers)
decoder_layer = nn.TransformerDecoderLayer(emb_dim, nhead, dim_feedforward, dropout)
self.transformer_decoder = nn.TransformerDecoder(decoder_layer, num_decoder_layers)
self.output_layer = nn.Linear(emb_dim, vocab_size)
def forward(self, src, tgt, src_mask=None, tgt_mask=None, memory_mask=None, src_key_padding_mask=None, tgt_key_padding_mask=None, memory_key_padding_mask=None):
src_emb = self.pos_encoder(self.custom_embedding(src.long()))
tgt_emb = self.pos_encoder(self.custom_embedding(tgt.long()))
encoder_output = self.transformer_encoder(src_emb, src_mask, src_key_padding_mask)
decoder_output = self.transformer_decoder(tgt_emb, encoder_output, tgt_mask, memory_mask, tgt_key_padding_mask, memory_key_padding_mask)
output = self.output_layer(decoder_output)
return output
# Définition de la classe PositionalEncoding (identique à l'exemple précédent)
class PositionalEncoding(nn.Module):
def __init__(self, d_model, dropout=0.1, max_len=5000):
super(PositionalEncoding, self).__init__()
self.dropout = nn.Dropout(p=dropout)
pe = torch.zeros(max_len, d_model)
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0).transpose(0, 1)
self.register_buffer('pe', pe)
def forward(self, x):
x = x + self.pe[:x.size(0), :]
return self.dropout(x)
# Préparation des données
def collate_fn(batch):
inputs = [item[0] for item in batch]
targets = [item[1] for item in batch]
inputs = pad_sequence(inputs, batch_first=True, padding_value=len(tokens) + 1)
targets = pad_sequence(targets, batch_first=True, padding_value=len(tokens) + 1)
return inputs, targets
train_loader = DataLoader(MyDataset, batch_size=32, shuffle=True, collate_fn=collate_fn)
# Définition du modèle, de la fonction de perte et de l'optimiseur
model = TransformerModel(vocab_size=len(tokens) + 2, emb_dim=512, nhead=8, num_encoder_layers=6, num_decoder_layers=6, dim_feedforward=2048)
loss_fn = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
epochs = 10
for epoch in range(epochs):
total_loss = 0.0
for batch_idx, (inputs, targets) in enumerate(train_loader):
optimizer.zero_grad()
output = model(inputs, targets[:, :-1]) # Shifted targets
output = output.transpose(1, 2) # Adjust shape for loss function
loss = loss_fn(output, targets[:, 1:].long()) # Shifted targets
loss.backward()
optimizer.step()
total_loss += loss.item()
if batch_idx % 100 == 0:
print(f"Epoch {epoch + 1}/{epochs}, Batch {batch_idx}/{len(train_loader)}, Loss: {total_loss / (batch_idx + 1)}")
print(f"Epoch {epoch + 1}/{epochs}, Loss: {total_loss / len(train_loader)}")