GGorman commited on
Commit
8500ca0
1 Parent(s): 87a6115

Upload modeling_deepseek.py with huggingface_hub

Browse files
Files changed (1) hide show
  1. modeling_deepseek.py +1922 -0
modeling_deepseek.py ADDED
@@ -0,0 +1,1922 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2023 DeepSeek-AI and The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+ """ PyTorch DeepSeek model."""
21
+ import math
22
+ import warnings
23
+ from typing import List, Optional, Tuple, Union
24
+
25
+ import torch
26
+ import torch.nn.functional as F
27
+ import torch.utils.checkpoint
28
+ from torch import nn
29
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
30
+
31
+ from transformers.activations import ACT2FN
32
+ from transformers.cache_utils import Cache, DynamicCache
33
+ from transformers.modeling_attn_mask_utils import (
34
+ AttentionMaskConverter,
35
+ _prepare_4d_attention_mask,
36
+ _prepare_4d_causal_attention_mask,
37
+ )
38
+ from transformers.modeling_outputs import (
39
+ BaseModelOutputWithPast,
40
+ CausalLMOutputWithPast,
41
+ SequenceClassifierOutputWithPast,
42
+ )
43
+ from transformers.modeling_utils import PreTrainedModel
44
+ from transformers.pytorch_utils import (
45
+ ALL_LAYERNORM_LAYERS,
46
+ is_torch_greater_or_equal_than_1_13,
47
+ )
48
+ from transformers.utils import (
49
+ add_start_docstrings,
50
+ add_start_docstrings_to_model_forward,
51
+ is_flash_attn_2_available,
52
+ is_flash_attn_greater_or_equal_2_10,
53
+ logging,
54
+ replace_return_docstrings,
55
+ )
56
+ from transformers.utils.import_utils import is_torch_fx_available
57
+ from .configuration_deepseek import DeepseekV2Config
58
+ import torch.distributed as dist
59
+ import numpy as np
60
+
61
+ if is_flash_attn_2_available():
62
+ from flash_attn import flash_attn_func, flash_attn_varlen_func
63
+ from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
64
+
65
+
66
+ # This makes `_prepare_4d_causal_attention_mask` a leaf function in the FX graph.
67
+ # It means that the function will not be traced through and simply appear as a node in the graph.
68
+ if is_torch_fx_available():
69
+ if not is_torch_greater_or_equal_than_1_13:
70
+ import torch.fx
71
+
72
+ _prepare_4d_causal_attention_mask = torch.fx.wrap(_prepare_4d_causal_attention_mask)
73
+
74
+
75
+ logger = logging.get_logger(__name__)
76
+
77
+ _CONFIG_FOR_DOC = "DeepseekV2Config"
78
+
79
+
80
+ def _get_unpad_data(attention_mask):
81
+ seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
82
+ indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
83
+ max_seqlen_in_batch = seqlens_in_batch.max().item()
84
+ cu_seqlens = F.pad(
85
+ torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0)
86
+ )
87
+ return (
88
+ indices,
89
+ cu_seqlens,
90
+ max_seqlen_in_batch,
91
+ )
92
+
93
+
94
+ class DeepseekV2RMSNorm(nn.Module):
95
+ def __init__(self, hidden_size, eps=1e-6):
96
+ """
97
+ DeepseekV2RMSNorm is equivalent to T5LayerNorm
98
+ """
99
+ super().__init__()
100
+ self.weight = nn.Parameter(torch.ones(hidden_size))
101
+ self.variance_epsilon = eps
102
+
103
+ def forward(self, hidden_states):
104
+ input_dtype = hidden_states.dtype
105
+ hidden_states = hidden_states.to(torch.float32)
106
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
107
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
108
+ return self.weight * hidden_states.to(input_dtype)
109
+
110
+
111
+ ALL_LAYERNORM_LAYERS.append(DeepseekV2RMSNorm)
112
+
113
+
114
+ class DeepseekV2RotaryEmbedding(nn.Module):
115
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
116
+ super().__init__()
117
+
118
+ self.dim = dim
119
+ self.max_position_embeddings = max_position_embeddings
120
+ self.base = base
121
+ inv_freq = 1.0 / (
122
+ self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)
123
+ )
124
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
125
+
126
+ # Build here to make `torch.jit.trace` work.
127
+ self._set_cos_sin_cache(
128
+ seq_len=max_position_embeddings,
129
+ device=self.inv_freq.device,
130
+ dtype=torch.get_default_dtype(),
131
+ )
132
+ self.max_seq_len_cached = None
133
+
134
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
135
+ self.max_seq_len_cached = seq_len
136
+ t = torch.arange(
137
+ self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype
138
+ )
139
+
140
+ freqs = torch.outer(t, self.inv_freq.to(t.device))
141
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
142
+ emb = torch.cat((freqs, freqs), dim=-1)
143
+ self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
144
+ self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
145
+
146
+ def forward(self, x, seq_len=None):
147
+ # x: [bs, num_attention_heads, seq_len, head_size]
148
+ if self.max_seq_len_cached is None or seq_len > self.max_seq_len_cached:
149
+ self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
150
+
151
+ return (
152
+ self.cos_cached[:seq_len].to(dtype=x.dtype),
153
+ self.sin_cached[:seq_len].to(dtype=x.dtype),
154
+ )
155
+
156
+
157
+ # Copied from transformers.models.llama.modeling_llama.LlamaLinearScalingRotaryEmbedding with Llama->DeepseekV2
158
+ class DeepseekV2LinearScalingRotaryEmbedding(DeepseekV2RotaryEmbedding):
159
+ """DeepseekV2RotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
160
+
161
+ def __init__(
162
+ self,
163
+ dim,
164
+ max_position_embeddings=2048,
165
+ base=10000,
166
+ device=None,
167
+ scaling_factor=1.0,
168
+ ):
169
+ self.scaling_factor = scaling_factor
170
+ super().__init__(dim, max_position_embeddings, base, device)
171
+
172
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
173
+ self.max_seq_len_cached = seq_len
174
+ t = torch.arange(
175
+ self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype
176
+ )
177
+ t = t / self.scaling_factor
178
+
179
+ freqs = torch.outer(t, self.inv_freq)
180
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
181
+ emb = torch.cat((freqs, freqs), dim=-1)
182
+ self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
183
+ self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
184
+
185
+
186
+ # Copied from transformers.models.llama.modeling_llama.LlamaDynamicNTKScalingRotaryEmbedding with Llama->DeepseekV2
187
+ class DeepseekV2DynamicNTKScalingRotaryEmbedding(DeepseekV2RotaryEmbedding):
188
+ """DeepseekV2RotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
189
+
190
+ def __init__(
191
+ self,
192
+ dim,
193
+ max_position_embeddings=2048,
194
+ base=10000,
195
+ device=None,
196
+ scaling_factor=1.0,
197
+ ):
198
+ self.scaling_factor = scaling_factor
199
+ super().__init__(dim, max_position_embeddings, base, device)
200
+
201
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
202
+ self.max_seq_len_cached = seq_len
203
+
204
+ if seq_len > self.max_position_embeddings:
205
+ base = self.base * (
206
+ (self.scaling_factor * seq_len / self.max_position_embeddings)
207
+ - (self.scaling_factor - 1)
208
+ ) ** (self.dim / (self.dim - 2))
209
+ inv_freq = 1.0 / (
210
+ base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)
211
+ )
212
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
213
+
214
+ t = torch.arange(
215
+ self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype
216
+ )
217
+
218
+ freqs = torch.outer(t, self.inv_freq)
219
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
220
+ emb = torch.cat((freqs, freqs), dim=-1)
221
+ self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
222
+ self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
223
+
224
+
225
+ # Inverse dim formula to find dim based on number of rotations
226
+ def yarn_find_correction_dim(
227
+ num_rotations, dim, base=10000, max_position_embeddings=2048
228
+ ):
229
+ return (dim * math.log(max_position_embeddings / (num_rotations * 2 * math.pi))) / (
230
+ 2 * math.log(base)
231
+ )
232
+
233
+
234
+ # Find dim range bounds based on rotations
235
+ def yarn_find_correction_range(
236
+ low_rot, high_rot, dim, base=10000, max_position_embeddings=2048
237
+ ):
238
+ low = math.floor(
239
+ yarn_find_correction_dim(low_rot, dim, base, max_position_embeddings)
240
+ )
241
+ high = math.ceil(
242
+ yarn_find_correction_dim(high_rot, dim, base, max_position_embeddings)
243
+ )
244
+ return max(low, 0), min(high, dim - 1) # Clamp values just in case
245
+
246
+
247
+ def yarn_get_mscale(scale=1, mscale=1):
248
+ if scale <= 1:
249
+ return 1.0
250
+ return 0.1 * mscale * math.log(scale) + 1.0
251
+
252
+
253
+ def yarn_linear_ramp_mask(min, max, dim):
254
+ if min == max:
255
+ max += 0.001 # Prevent singularity
256
+
257
+ linear_func = (torch.arange(dim, dtype=torch.float32) - min) / (max - min)
258
+ ramp_func = torch.clamp(linear_func, 0, 1)
259
+ return ramp_func
260
+
261
+
262
+ class DeepseekV2YarnRotaryEmbedding(DeepseekV2RotaryEmbedding):
263
+
264
+ def __init__(
265
+ self,
266
+ dim,
267
+ max_position_embeddings=2048,
268
+ base=10000,
269
+ device=None,
270
+ scaling_factor=1.0,
271
+ original_max_position_embeddings=4096,
272
+ beta_fast=32,
273
+ beta_slow=1,
274
+ mscale=1,
275
+ mscale_all_dim=0,
276
+ ):
277
+ self.scaling_factor = scaling_factor
278
+ self.original_max_position_embeddings = original_max_position_embeddings
279
+ self.beta_fast = beta_fast
280
+ self.beta_slow = beta_slow
281
+ self.mscale = mscale
282
+ self.mscale_all_dim = mscale_all_dim
283
+ super().__init__(dim, max_position_embeddings, base, device)
284
+
285
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
286
+ self.max_seq_len_cached = seq_len
287
+ dim = self.dim
288
+
289
+ freq_extra = 1.0 / (
290
+ self.base
291
+ ** (torch.arange(0, dim, 2, dtype=torch.float32, device=device) / dim)
292
+ )
293
+ freq_inter = 1.0 / (
294
+ self.scaling_factor
295
+ * self.base
296
+ ** (torch.arange(0, dim, 2, dtype=torch.float32, device=device) / dim)
297
+ )
298
+
299
+ low, high = yarn_find_correction_range(
300
+ self.beta_fast,
301
+ self.beta_slow,
302
+ dim,
303
+ self.base,
304
+ self.original_max_position_embeddings,
305
+ )
306
+ inv_freq_mask = 1.0 - yarn_linear_ramp_mask(low, high, dim // 2).to(
307
+ device=device, dtype=torch.float32
308
+ )
309
+ inv_freq = freq_inter * (1 - inv_freq_mask) + freq_extra * inv_freq_mask
310
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
311
+
312
+ t = torch.arange(seq_len, device=device, dtype=torch.float32)
313
+
314
+ freqs = torch.outer(t, inv_freq)
315
+
316
+ _mscale = float(
317
+ yarn_get_mscale(self.scaling_factor, self.mscale)
318
+ / yarn_get_mscale(self.scaling_factor, self.mscale_all_dim)
319
+ )
320
+
321
+ emb = torch.cat((freqs, freqs), dim=-1)
322
+ self.register_buffer(
323
+ "cos_cached", (emb.cos() * _mscale).to(dtype), persistent=False
324
+ )
325
+ self.register_buffer(
326
+ "sin_cached", (emb.sin() * _mscale).to(dtype), persistent=False
327
+ )
328
+
329
+
330
+ # Copied from transformers.models.llama.modeling_llama.rotate_half
331
+ def rotate_half(x):
332
+ """Rotates half the hidden dims of the input."""
333
+ x1 = x[..., : x.shape[-1] // 2]
334
+ x2 = x[..., x.shape[-1] // 2 :]
335
+ return torch.cat((-x2, x1), dim=-1)
336
+
337
+
338
+ # Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb
339
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
340
+ """Applies Rotary Position Embedding to the query and key tensors.
341
+
342
+ Args:
343
+ q (`torch.Tensor`): The query tensor.
344
+ k (`torch.Tensor`): The key tensor.
345
+ cos (`torch.Tensor`): The cosine part of the rotary embedding.
346
+ sin (`torch.Tensor`): The sine part of the rotary embedding.
347
+ position_ids (`torch.Tensor`):
348
+ The position indices of the tokens corresponding to the query and key tensors. For example, this can be
349
+ used to pass offsetted position ids when working with a KV-cache.
350
+ unsqueeze_dim (`int`, *optional*, defaults to 1):
351
+ The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
352
+ sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
353
+ that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
354
+ k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
355
+ cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
356
+ the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
357
+ Returns:
358
+ `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
359
+ """
360
+ cos = cos[position_ids].unsqueeze(unsqueeze_dim)
361
+ sin = sin[position_ids].unsqueeze(unsqueeze_dim)
362
+
363
+ b, h, s, d = q.shape
364
+ q = q.view(b, h, s, d // 2, 2).transpose(4, 3).reshape(b, h, s, d)
365
+
366
+ b, h, s, d = k.shape
367
+ k = k.view(b, h, s, d // 2, 2).transpose(4, 3).reshape(b, h, s, d)
368
+
369
+ q_embed = (q * cos) + (rotate_half(q) * sin)
370
+ k_embed = (k * cos) + (rotate_half(k) * sin)
371
+ return q_embed, k_embed
372
+
373
+
374
+ class DeepseekV2MLP(nn.Module):
375
+ def __init__(self, config, hidden_size=None, intermediate_size=None):
376
+ super().__init__()
377
+ self.config = config
378
+ self.hidden_size = config.hidden_size if hidden_size is None else hidden_size
379
+ self.intermediate_size = (
380
+ config.intermediate_size if intermediate_size is None else intermediate_size
381
+ )
382
+
383
+ self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
384
+ self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
385
+ self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
386
+ self.act_fn = ACT2FN[config.hidden_act]
387
+
388
+ def forward(self, x):
389
+ down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
390
+ return down_proj
391
+
392
+
393
+ class MoEGate(nn.Module):
394
+ def __init__(self, config):
395
+ super().__init__()
396
+ self.config = config
397
+ self.top_k = config.num_experts_per_tok
398
+ self.n_routed_experts = config.n_routed_experts
399
+ self.routed_scaling_factor = config.routed_scaling_factor
400
+ self.scoring_func = config.scoring_func
401
+ self.alpha = config.aux_loss_alpha
402
+ self.seq_aux = config.seq_aux
403
+ self.topk_method = config.topk_method
404
+ self.n_group = config.n_group
405
+ self.topk_group = config.topk_group
406
+
407
+ # topk selection algorithm
408
+ self.norm_topk_prob = config.norm_topk_prob
409
+ self.gating_dim = config.hidden_size
410
+ self.weight = nn.Parameter(
411
+ torch.empty((self.n_routed_experts, self.gating_dim))
412
+ )
413
+ self.reset_parameters()
414
+
415
+ def reset_parameters(self) -> None:
416
+ import torch.nn.init as init
417
+
418
+ init.kaiming_uniform_(self.weight, a=math.sqrt(5))
419
+
420
+ def forward(self, hidden_states):
421
+ bsz, seq_len, h = hidden_states.shape
422
+ ### compute gating score
423
+ hidden_states = hidden_states.view(-1, h)
424
+ logits = F.linear(
425
+ hidden_states.type(torch.float32), self.weight.type(torch.float32), None
426
+ )
427
+ if self.scoring_func == "softmax":
428
+ scores = logits.softmax(dim=-1, dtype=torch.float32)
429
+ else:
430
+ raise NotImplementedError(
431
+ f"insupportable scoring function for MoE gating: {self.scoring_func}"
432
+ )
433
+
434
+ ### select top-k experts
435
+ if self.topk_method == "greedy":
436
+ topk_weight, topk_idx = torch.topk(
437
+ scores, k=self.top_k, dim=-1, sorted=False
438
+ )
439
+ elif self.topk_method == "group_limited_greedy":
440
+ group_scores = (
441
+ scores.view(bsz * seq_len, self.n_group, -1).max(dim=-1).values
442
+ ) # [n, n_group]
443
+ group_idx = torch.topk(
444
+ group_scores, k=self.topk_group, dim=-1, sorted=False
445
+ )[
446
+ 1
447
+ ] # [n, top_k_group]
448
+ group_mask = torch.zeros_like(group_scores) # [n, n_group]
449
+ group_mask.scatter_(1, group_idx, 1) # [n, n_group]
450
+ score_mask = (
451
+ group_mask.unsqueeze(-1)
452
+ .expand(
453
+ bsz * seq_len, self.n_group, self.n_routed_experts // self.n_group
454
+ )
455
+ .reshape(bsz * seq_len, -1)
456
+ ) # [n, e]
457
+ tmp_scores = scores.masked_fill(~score_mask.bool(), 0.0) # [n, e]
458
+ topk_weight, topk_idx = torch.topk(
459
+ tmp_scores, k=self.top_k, dim=-1, sorted=False
460
+ )
461
+
462
+ ### norm gate to sum 1
463
+ if self.top_k > 1 and self.norm_topk_prob:
464
+ denominator = topk_weight.sum(dim=-1, keepdim=True) + 1e-20
465
+ topk_weight = topk_weight / denominator
466
+ else:
467
+ topk_weight = topk_weight * self.routed_scaling_factor
468
+ ### expert-level computation auxiliary loss
469
+ if self.training and self.alpha > 0.0:
470
+ scores_for_aux = scores
471
+ aux_topk = self.top_k
472
+ # always compute aux loss based on the naive greedy topk method
473
+ topk_idx_for_aux_loss = topk_idx.view(bsz, -1)
474
+ if self.seq_aux:
475
+ scores_for_seq_aux = scores_for_aux.view(bsz, seq_len, -1)
476
+ ce = torch.zeros(
477
+ bsz, self.n_routed_experts, device=hidden_states.device
478
+ )
479
+ ce.scatter_add_(
480
+ 1,
481
+ topk_idx_for_aux_loss,
482
+ torch.ones(bsz, seq_len * aux_topk, device=hidden_states.device),
483
+ ).div_(seq_len * aux_topk / self.n_routed_experts)
484
+ aux_loss = (ce * scores_for_seq_aux.mean(dim=1)).sum(
485
+ dim=1
486
+ ).mean() * self.alpha
487
+ else:
488
+ mask_ce = F.one_hot(
489
+ topk_idx_for_aux_loss.view(-1), num_classes=self.n_routed_experts
490
+ )
491
+ ce = mask_ce.float().mean(0)
492
+ Pi = scores_for_aux.mean(0)
493
+ fi = ce * self.n_routed_experts
494
+ aux_loss = (Pi * fi).sum() * self.alpha
495
+ else:
496
+ aux_loss = None
497
+ return topk_idx, topk_weight, aux_loss
498
+
499
+
500
+ class AddAuxiliaryLoss(torch.autograd.Function):
501
+ """
502
+ The trick function of adding auxiliary (aux) loss,
503
+ which includes the gradient of the aux loss during backpropagation.
504
+ """
505
+
506
+ @staticmethod
507
+ def forward(ctx, x, loss):
508
+ assert loss.numel() == 1
509
+ ctx.dtype = loss.dtype
510
+ ctx.required_aux_loss = loss.requires_grad
511
+ return x
512
+
513
+ @staticmethod
514
+ def backward(ctx, grad_output):
515
+ grad_loss = None
516
+ if ctx.required_aux_loss:
517
+ grad_loss = torch.ones(1, dtype=ctx.dtype, device=grad_output.device)
518
+ return grad_output, grad_loss
519
+
520
+
521
+ class DeepseekV2MoE(nn.Module):
522
+ """
523
+ A mixed expert module containing shared experts.
524
+ """
525
+
526
+ def __init__(self, config):
527
+ super().__init__()
528
+ self.config = config
529
+ self.num_experts_per_tok = config.num_experts_per_tok
530
+
531
+ if hasattr(config, "ep_size") and config.ep_size > 1:
532
+ assert config.ep_size == dist.get_world_size()
533
+ self.ep_size = config.ep_size
534
+ self.experts_per_rank = config.n_routed_experts // config.ep_size
535
+ self.ep_rank = dist.get_rank()
536
+ self.experts = nn.ModuleList(
537
+ [
538
+ (
539
+ DeepseekV2MLP(
540
+ config, intermediate_size=config.moe_intermediate_size
541
+ )
542
+ if i >= self.ep_rank * self.experts_per_rank
543
+ and i < (self.ep_rank + 1) * self.experts_per_rank
544
+ else None
545
+ )
546
+ for i in range(config.n_routed_experts)
547
+ ]
548
+ )
549
+ else:
550
+ self.ep_size = 1
551
+ self.experts_per_rank = config.n_routed_experts
552
+ self.ep_rank = 0
553
+ self.experts = nn.ModuleList(
554
+ [
555
+ DeepseekV2MLP(
556
+ config, intermediate_size=config.moe_intermediate_size
557
+ )
558
+ for i in range(config.n_routed_experts)
559
+ ]
560
+ )
561
+ self.gate = MoEGate(config)
562
+ if config.n_shared_experts is not None:
563
+ intermediate_size = config.moe_intermediate_size * config.n_shared_experts
564
+ self.shared_experts = DeepseekV2MLP(
565
+ config=config, intermediate_size=intermediate_size
566
+ )
567
+
568
+ def forward(self, hidden_states):
569
+ identity = hidden_states
570
+ orig_shape = hidden_states.shape
571
+ topk_idx, topk_weight, aux_loss = self.gate(hidden_states)
572
+ hidden_states = hidden_states.view(-1, hidden_states.shape[-1])
573
+ flat_topk_idx = topk_idx.view(-1)
574
+ if self.training:
575
+ hidden_states = hidden_states.repeat_interleave(
576
+ self.num_experts_per_tok, dim=0
577
+ )
578
+ y = torch.empty_like(hidden_states)
579
+ for i, expert in enumerate(self.experts):
580
+ y[flat_topk_idx == i] = expert(hidden_states[flat_topk_idx == i])
581
+ y = (y.view(*topk_weight.shape, -1) * topk_weight.unsqueeze(-1)).sum(dim=1)
582
+ y = y.to(hidden_states.dtype).view(*orig_shape)
583
+ y = AddAuxiliaryLoss.apply(y, aux_loss)
584
+ else:
585
+ y = self.moe_infer(hidden_states, topk_idx, topk_weight).view(*orig_shape)
586
+ if self.config.n_shared_experts is not None:
587
+ y = y + self.shared_experts(identity)
588
+ return y
589
+
590
+ @torch.no_grad()
591
+ def moe_infer(self, x, topk_ids, topk_weight):
592
+ cnts = topk_ids.new_zeros((topk_ids.shape[0], len(self.experts)))
593
+ cnts.scatter_(1, topk_ids, 1)
594
+ tokens_per_expert = cnts.sum(dim=0)
595
+ idxs = topk_ids.view(-1).argsort()
596
+ sorted_tokens = x[idxs // topk_ids.shape[1]]
597
+ sorted_tokens_shape = sorted_tokens.shape
598
+ if self.ep_size > 1:
599
+ tokens_per_ep_rank = tokens_per_expert.view(self.ep_size, -1).sum(dim=1)
600
+ tokens_per_expert_group = tokens_per_expert.new_empty(
601
+ tokens_per_expert.shape[0]
602
+ )
603
+ dist.all_to_all_single(tokens_per_expert_group, tokens_per_expert)
604
+ output_splits = (
605
+ tokens_per_expert_group.view(self.ep_size, -1)
606
+ .sum(1)
607
+ .cpu()
608
+ .numpy()
609
+ .tolist()
610
+ )
611
+ gathered_tokens = sorted_tokens.new_empty(
612
+ tokens_per_expert_group.sum(dim=0).cpu().item(), sorted_tokens.shape[1]
613
+ )
614
+ input_split_sizes = tokens_per_ep_rank.cpu().numpy().tolist()
615
+ dist.all_to_all(
616
+ list(gathered_tokens.split(output_splits)),
617
+ list(sorted_tokens.split(input_split_sizes)),
618
+ )
619
+ tokens_per_expert_post_gather = tokens_per_expert_group.view(
620
+ self.ep_size, self.experts_per_rank
621
+ ).sum(dim=0)
622
+ gatherd_idxs = np.zeros(shape=(gathered_tokens.shape[0],), dtype=np.int32)
623
+ s = 0
624
+ for i, k in enumerate(tokens_per_expert_group.cpu().numpy()):
625
+ gatherd_idxs[s : s + k] = i % self.experts_per_rank
626
+ s += k
627
+ gatherd_idxs = gatherd_idxs.argsort()
628
+ sorted_tokens = gathered_tokens[gatherd_idxs]
629
+ tokens_per_expert = tokens_per_expert_post_gather
630
+ tokens_per_expert = tokens_per_expert.cpu().numpy()
631
+
632
+ outputs = []
633
+ start_idx = 0
634
+ for i, num_tokens in enumerate(tokens_per_expert):
635
+ end_idx = start_idx + num_tokens
636
+ if num_tokens == 0:
637
+ continue
638
+ expert = self.experts[i + self.ep_rank * self.experts_per_rank]
639
+ tokens_for_this_expert = sorted_tokens[start_idx:end_idx]
640
+ expert_out = expert(tokens_for_this_expert)
641
+ outputs.append(expert_out)
642
+ start_idx = end_idx
643
+
644
+ outs = torch.cat(outputs, dim=0) if len(outputs) else sorted_tokens.new_empty(0)
645
+ if self.ep_size > 1:
646
+ new_x = torch.empty_like(outs)
647
+ new_x[gatherd_idxs] = outs
648
+ gathered_tokens = new_x.new_empty(*sorted_tokens_shape)
649
+ dist.all_to_all(
650
+ list(gathered_tokens.split(input_split_sizes)),
651
+ list(new_x.split(output_splits)),
652
+ )
653
+ outs = gathered_tokens
654
+
655
+ new_x = torch.empty_like(outs)
656
+ new_x[idxs] = outs
657
+ final_out = (
658
+ new_x.view(*topk_ids.shape, -1)
659
+ .type(topk_weight.dtype)
660
+ .mul_(topk_weight.unsqueeze(dim=-1))
661
+ .sum(dim=1)
662
+ .type(new_x.dtype)
663
+ )
664
+ return final_out
665
+
666
+
667
+ # Copied from transformers.models.llama.modeling_llama.repeat_kv
668
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
669
+ """
670
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
671
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
672
+ """
673
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
674
+ if n_rep == 1:
675
+ return hidden_states
676
+ hidden_states = hidden_states[:, :, None, :, :].expand(
677
+ batch, num_key_value_heads, n_rep, slen, head_dim
678
+ )
679
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
680
+
681
+
682
+ # Copied from transformers.models.llama.modeling_llama.LlamaAttention with Llama->DeepseekV2
683
+ class DeepseekV2Attention(nn.Module):
684
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
685
+
686
+ def __init__(self, config: DeepseekV2Config, layer_idx: Optional[int] = None):
687
+ super().__init__()
688
+ self.config = config
689
+ self.layer_idx = layer_idx
690
+ if layer_idx is None:
691
+ logger.warning_once(
692
+ f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will "
693
+ "to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
694
+ "when creating this class."
695
+ )
696
+
697
+ self.attention_dropout = config.attention_dropout
698
+ self.hidden_size = config.hidden_size
699
+ self.num_heads = config.num_attention_heads
700
+
701
+ self.max_position_embeddings = config.max_position_embeddings
702
+ self.rope_theta = config.rope_theta
703
+ self.q_lora_rank = config.q_lora_rank
704
+ self.qk_rope_head_dim = config.qk_rope_head_dim
705
+ self.kv_lora_rank = config.kv_lora_rank
706
+ self.v_head_dim = config.v_head_dim
707
+ self.qk_nope_head_dim = config.qk_nope_head_dim
708
+ self.q_head_dim = config.qk_nope_head_dim + config.qk_rope_head_dim
709
+
710
+ self.is_causal = True
711
+
712
+ if self.q_lora_rank is None:
713
+ self.q_proj = nn.Linear(
714
+ self.hidden_size, self.num_heads * self.q_head_dim, bias=False
715
+ )
716
+ else:
717
+ self.q_a_proj = nn.Linear(
718
+ self.hidden_size, config.q_lora_rank, bias=config.attention_bias
719
+ )
720
+ self.q_a_layernorm = DeepseekV2RMSNorm(config.q_lora_rank)
721
+ self.q_b_proj = nn.Linear(
722
+ config.q_lora_rank, self.num_heads * self.q_head_dim, bias=False
723
+ )
724
+
725
+ self.kv_a_proj_with_mqa = nn.Linear(
726
+ self.hidden_size,
727
+ config.kv_lora_rank + config.qk_rope_head_dim,
728
+ bias=config.attention_bias,
729
+ )
730
+ self.kv_a_layernorm = DeepseekV2RMSNorm(config.kv_lora_rank)
731
+ self.kv_b_proj = nn.Linear(
732
+ config.kv_lora_rank,
733
+ self.num_heads
734
+ * (self.q_head_dim - self.qk_rope_head_dim + self.v_head_dim),
735
+ bias=False,
736
+ )
737
+
738
+ self.o_proj = nn.Linear(
739
+ self.num_heads * self.v_head_dim,
740
+ self.hidden_size,
741
+ bias=config.attention_bias,
742
+ )
743
+ self._init_rope()
744
+
745
+ self.softmax_scale = self.q_head_dim ** (-0.5)
746
+ if self.config.rope_scaling is not None:
747
+ mscale_all_dim = self.config.rope_scaling.get("mscale_all_dim", 0)
748
+ scaling_factor = self.config.rope_scaling["factor"]
749
+ if mscale_all_dim:
750
+ mscale = yarn_get_mscale(scaling_factor, mscale_all_dim)
751
+ self.softmax_scale = self.softmax_scale * mscale * mscale
752
+
753
+ def _init_rope(self):
754
+ if self.config.rope_scaling is None:
755
+ self.rotary_emb = DeepseekV2RotaryEmbedding(
756
+ self.qk_rope_head_dim,
757
+ max_position_embeddings=self.max_position_embeddings,
758
+ base=self.rope_theta,
759
+ )
760
+ else:
761
+ scaling_type = self.config.rope_scaling["type"]
762
+ scaling_factor = self.config.rope_scaling["factor"]
763
+ if scaling_type == "linear":
764
+ self.rotary_emb = DeepseekV2LinearScalingRotaryEmbedding(
765
+ self.qk_rope_head_dim,
766
+ max_position_embeddings=self.max_position_embeddings,
767
+ scaling_factor=scaling_factor,
768
+ base=self.rope_theta,
769
+ )
770
+ elif scaling_type == "dynamic":
771
+ self.rotary_emb = DeepseekV2DynamicNTKScalingRotaryEmbedding(
772
+ self.qk_rope_head_dim,
773
+ max_position_embeddings=self.max_position_embeddings,
774
+ scaling_factor=scaling_factor,
775
+ base=self.rope_theta,
776
+ )
777
+ elif scaling_type == "yarn":
778
+ kwargs = {
779
+ key: self.config.rope_scaling[key]
780
+ for key in [
781
+ "original_max_position_embeddings",
782
+ "beta_fast",
783
+ "beta_slow",
784
+ "mscale",
785
+ "mscale_all_dim",
786
+ ]
787
+ if key in self.config.rope_scaling
788
+ }
789
+ self.rotary_emb = DeepseekV2YarnRotaryEmbedding(
790
+ self.qk_rope_head_dim,
791
+ max_position_embeddings=self.max_position_embeddings,
792
+ scaling_factor=scaling_factor,
793
+ base=self.rope_theta,
794
+ **kwargs,
795
+ )
796
+ else:
797
+ raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
798
+
799
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
800
+ return (
801
+ tensor.view(bsz, seq_len, self.num_heads, self.v_head_dim)
802
+ .transpose(1, 2)
803
+ .contiguous()
804
+ )
805
+
806
+ def forward(
807
+ self,
808
+ hidden_states: torch.Tensor,
809
+ attention_mask: Optional[torch.Tensor] = None,
810
+ position_ids: Optional[torch.LongTensor] = None,
811
+ past_key_value: Optional[Cache] = None,
812
+ output_attentions: bool = False,
813
+ use_cache: bool = False,
814
+ **kwargs,
815
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
816
+ if "padding_mask" in kwargs:
817
+ warnings.warn(
818
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
819
+ )
820
+ bsz, q_len, _ = hidden_states.size()
821
+
822
+ if self.q_lora_rank is None:
823
+ q = self.q_proj(hidden_states)
824
+ else:
825
+ q = self.q_b_proj(self.q_a_layernorm(self.q_a_proj(hidden_states)))
826
+ q = q.view(bsz, q_len, self.num_heads, self.q_head_dim).transpose(1, 2)
827
+ q_nope, q_pe = torch.split(
828
+ q, [self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1
829
+ )
830
+
831
+ compressed_kv = self.kv_a_proj_with_mqa(hidden_states)
832
+ compressed_kv, k_pe = torch.split(
833
+ compressed_kv, [self.kv_lora_rank, self.qk_rope_head_dim], dim=-1
834
+ )
835
+ k_pe = k_pe.view(bsz, q_len, 1, self.qk_rope_head_dim).transpose(1, 2)
836
+ kv = (
837
+ self.kv_b_proj(self.kv_a_layernorm(compressed_kv))
838
+ .view(bsz, q_len, self.num_heads, self.qk_nope_head_dim + self.v_head_dim)
839
+ .transpose(1, 2)
840
+ )
841
+
842
+ k_nope, value_states = torch.split(
843
+ kv, [self.qk_nope_head_dim, self.v_head_dim], dim=-1
844
+ )
845
+ kv_seq_len = value_states.shape[-2]
846
+ if past_key_value is not None:
847
+ if self.layer_idx is None:
848
+ raise ValueError(
849
+ f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
850
+ "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
851
+ "with a layer index."
852
+ )
853
+ kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
854
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
855
+
856
+ q_pe, k_pe = apply_rotary_pos_emb(q_pe, k_pe, cos, sin, position_ids)
857
+
858
+ query_states = k_pe.new_empty(bsz, self.num_heads, q_len, self.q_head_dim)
859
+ query_states[:, :, :, : self.qk_nope_head_dim] = q_nope
860
+ query_states[:, :, :, self.qk_nope_head_dim :] = q_pe
861
+
862
+ key_states = k_pe.new_empty(bsz, self.num_heads, q_len, self.q_head_dim)
863
+ key_states[:, :, :, : self.qk_nope_head_dim] = k_nope
864
+ key_states[:, :, :, self.qk_nope_head_dim :] = k_pe
865
+ if past_key_value is not None:
866
+ cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
867
+ key_states, value_states = past_key_value.update(
868
+ key_states, value_states, self.layer_idx, cache_kwargs
869
+ )
870
+
871
+ attn_weights = (
872
+ torch.matmul(query_states, key_states.transpose(2, 3)) * self.softmax_scale
873
+ )
874
+
875
+ if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
876
+ raise ValueError(
877
+ f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
878
+ f" {attn_weights.size()}"
879
+ )
880
+ assert attention_mask is not None
881
+ if attention_mask is not None:
882
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
883
+ raise ValueError(
884
+ f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
885
+ )
886
+ attn_weights = attn_weights + attention_mask
887
+
888
+ # upcast attention to fp32
889
+ attn_weights = nn.functional.softmax(
890
+ attn_weights, dim=-1, dtype=torch.float32
891
+ ).to(query_states.dtype)
892
+ attn_weights = nn.functional.dropout(
893
+ attn_weights, p=self.attention_dropout, training=self.training
894
+ )
895
+ attn_output = torch.matmul(attn_weights, value_states)
896
+
897
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.v_head_dim):
898
+ raise ValueError(
899
+ f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.v_head_dim)}, but is"
900
+ f" {attn_output.size()}"
901
+ )
902
+
903
+ attn_output = attn_output.transpose(1, 2).contiguous()
904
+
905
+ attn_output = attn_output.reshape(bsz, q_len, self.num_heads * self.v_head_dim)
906
+
907
+ attn_output = self.o_proj(attn_output)
908
+
909
+ if not output_attentions:
910
+ attn_weights = None
911
+
912
+ return attn_output, attn_weights, past_key_value
913
+
914
+
915
+ # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2 with Llama->DeepseekV2
916
+ class DeepseekV2FlashAttention2(DeepseekV2Attention):
917
+ """
918
+ DeepseekV2 flash attention module. This module inherits from `DeepseekV2Attention` as the weights of the module stays
919
+ untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
920
+ flash attention and deal with padding tokens in case the input contains any of them.
921
+ """
922
+
923
+ def __init__(self, *args, **kwargs):
924
+ super().__init__(*args, **kwargs)
925
+
926
+ # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
927
+ # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
928
+ # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
929
+ self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
930
+
931
+ def forward(
932
+ self,
933
+ hidden_states: torch.Tensor,
934
+ attention_mask: Optional[torch.LongTensor] = None,
935
+ position_ids: Optional[torch.LongTensor] = None,
936
+ past_key_value: Optional[Cache] = None,
937
+ output_attentions: bool = False,
938
+ use_cache: bool = False,
939
+ **kwargs,
940
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
941
+ # DeepseekV2FlashAttention2 attention does not support output_attentions
942
+ if "padding_mask" in kwargs:
943
+ warnings.warn(
944
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
945
+ )
946
+
947
+ # overwrite attention_mask with padding_mask
948
+ attention_mask = kwargs.pop("padding_mask")
949
+
950
+ output_attentions = False
951
+
952
+ bsz, q_len, _ = hidden_states.size()
953
+
954
+ if self.q_lora_rank is None:
955
+ q = self.q_proj(hidden_states)
956
+ else:
957
+ q = self.q_b_proj(self.q_a_layernorm(self.q_a_proj(hidden_states)))
958
+ q = q.view(bsz, q_len, self.num_heads, self.q_head_dim).transpose(1, 2)
959
+ q_nope, q_pe = torch.split(
960
+ q, [self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1
961
+ )
962
+
963
+ # Flash attention requires the input to have the shape
964
+ # batch_size x seq_length x head_dim x hidden_dim
965
+ # therefore we just need to keep the original shape
966
+ compressed_kv = self.kv_a_proj_with_mqa(hidden_states)
967
+ compressed_kv, k_pe = torch.split(
968
+ compressed_kv, [self.kv_lora_rank, self.qk_rope_head_dim], dim=-1
969
+ )
970
+ k_pe = k_pe.view(bsz, q_len, 1, self.qk_rope_head_dim).transpose(1, 2)
971
+ kv = (
972
+ self.kv_b_proj(self.kv_a_layernorm(compressed_kv))
973
+ .view(bsz, q_len, self.num_heads, self.qk_nope_head_dim + self.v_head_dim)
974
+ .transpose(1, 2)
975
+ )
976
+
977
+ k_nope, value_states = torch.split(
978
+ kv, [self.qk_nope_head_dim, self.v_head_dim], dim=-1
979
+ )
980
+ kv_seq_len = value_states.shape[-2]
981
+
982
+ kv_seq_len = value_states.shape[-2]
983
+ if past_key_value is not None:
984
+ kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
985
+
986
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
987
+ q_pe, k_pe = apply_rotary_pos_emb(q_pe, k_pe, cos, sin, position_ids)
988
+
989
+ query_states = k_pe.new_empty(bsz, self.num_heads, q_len, self.q_head_dim)
990
+ query_states[:, :, :, : self.qk_nope_head_dim] = q_nope
991
+ query_states[:, :, :, self.qk_nope_head_dim :] = q_pe
992
+
993
+ key_states = k_pe.new_empty(bsz, self.num_heads, q_len, self.q_head_dim)
994
+ key_states[:, :, :, : self.qk_nope_head_dim] = k_nope
995
+ key_states[:, :, :, self.qk_nope_head_dim :] = k_pe
996
+
997
+ if self.q_head_dim != self.v_head_dim:
998
+ value_states = F.pad(value_states, [0, self.q_head_dim - self.v_head_dim])
999
+
1000
+ if past_key_value is not None:
1001
+ cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
1002
+ key_states, value_states = past_key_value.update(
1003
+ key_states, value_states, self.layer_idx, cache_kwargs
1004
+ )
1005
+
1006
+ # TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
1007
+ # to be able to avoid many of these transpose/reshape/view.
1008
+ query_states = query_states.transpose(1, 2)
1009
+ key_states = key_states.transpose(1, 2)
1010
+ value_states = value_states.transpose(1, 2)
1011
+
1012
+ dropout_rate = self.attention_dropout if self.training else 0.0
1013
+
1014
+ # In PEFT, usually we cast the layer norms in float32 for training stability reasons
1015
+ # therefore the input hidden states gets silently casted in float32. Hence, we need
1016
+ # cast them back in the correct dtype just to be sure everything works as expected.
1017
+ # This might slowdown training & inference so it is recommended to not cast the LayerNorms
1018
+ # in fp32. (DeepseekV2RMSNorm handles it correctly)
1019
+
1020
+ input_dtype = query_states.dtype
1021
+ if input_dtype == torch.float32:
1022
+ # Handle the case where the model is quantized
1023
+ if hasattr(self.config, "_pre_quantization_dtype"):
1024
+ target_dtype = self.config._pre_quantization_dtype
1025
+ elif torch.is_autocast_enabled():
1026
+ target_dtype = torch.get_autocast_gpu_dtype()
1027
+ else:
1028
+ target_dtype = (
1029
+ self.q_proj.weight.dtype
1030
+ if self.q_lora_rank is None
1031
+ else self.q_a_proj.weight.dtype
1032
+ )
1033
+
1034
+ logger.warning_once(
1035
+ f"The input hidden states seems to be silently casted in float32, this might be related to"
1036
+ f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
1037
+ f" {target_dtype}."
1038
+ )
1039
+
1040
+ query_states = query_states.to(target_dtype)
1041
+ key_states = key_states.to(target_dtype)
1042
+ value_states = value_states.to(target_dtype)
1043
+
1044
+ attn_output = self._flash_attention_forward(
1045
+ query_states,
1046
+ key_states,
1047
+ value_states,
1048
+ attention_mask,
1049
+ q_len,
1050
+ dropout=dropout_rate,
1051
+ softmax_scale=self.softmax_scale,
1052
+ )
1053
+ if self.q_head_dim != self.v_head_dim:
1054
+ attn_output = attn_output[:, :, :, : self.v_head_dim]
1055
+
1056
+ attn_output = attn_output.reshape(
1057
+ bsz, q_len, self.num_heads * self.v_head_dim
1058
+ ).contiguous()
1059
+ attn_output = self.o_proj(attn_output)
1060
+
1061
+ if not output_attentions:
1062
+ attn_weights = None
1063
+
1064
+ return attn_output, attn_weights, past_key_value
1065
+
1066
+ def _flash_attention_forward(
1067
+ self,
1068
+ query_states,
1069
+ key_states,
1070
+ value_states,
1071
+ attention_mask,
1072
+ query_length,
1073
+ dropout=0.0,
1074
+ softmax_scale=None,
1075
+ ):
1076
+ """
1077
+ Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
1078
+ first unpad the input, then computes the attention scores and pad the final attention scores.
1079
+
1080
+ Args:
1081
+ query_states (`torch.Tensor`):
1082
+ Input query states to be passed to Flash Attention API
1083
+ key_states (`torch.Tensor`):
1084
+ Input key states to be passed to Flash Attention API
1085
+ value_states (`torch.Tensor`):
1086
+ Input value states to be passed to Flash Attention API
1087
+ attention_mask (`torch.Tensor`):
1088
+ The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
1089
+ position of padding tokens and 1 for the position of non-padding tokens.
1090
+ dropout (`int`, *optional*):
1091
+ Attention dropout
1092
+ softmax_scale (`float`, *optional*):
1093
+ The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
1094
+ """
1095
+ if not self._flash_attn_uses_top_left_mask:
1096
+ causal = self.is_causal
1097
+ else:
1098
+ # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in DeepseekV2FlashAttention2 __init__.
1099
+ causal = self.is_causal and query_length != 1
1100
+
1101
+ # Contains at least one padding token in the sequence
1102
+ if attention_mask is not None:
1103
+ batch_size = query_states.shape[0]
1104
+ (
1105
+ query_states,
1106
+ key_states,
1107
+ value_states,
1108
+ indices_q,
1109
+ cu_seq_lens,
1110
+ max_seq_lens,
1111
+ ) = self._upad_input(
1112
+ query_states, key_states, value_states, attention_mask, query_length
1113
+ )
1114
+
1115
+ cu_seqlens_q, cu_seqlens_k = cu_seq_lens
1116
+ max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
1117
+
1118
+ attn_output_unpad = flash_attn_varlen_func(
1119
+ query_states,
1120
+ key_states,
1121
+ value_states,
1122
+ cu_seqlens_q=cu_seqlens_q,
1123
+ cu_seqlens_k=cu_seqlens_k,
1124
+ max_seqlen_q=max_seqlen_in_batch_q,
1125
+ max_seqlen_k=max_seqlen_in_batch_k,
1126
+ dropout_p=dropout,
1127
+ softmax_scale=softmax_scale,
1128
+ causal=causal,
1129
+ )
1130
+
1131
+ attn_output = pad_input(
1132
+ attn_output_unpad, indices_q, batch_size, query_length
1133
+ )
1134
+ else:
1135
+ attn_output = flash_attn_func(
1136
+ query_states,
1137
+ key_states,
1138
+ value_states,
1139
+ dropout,
1140
+ softmax_scale=softmax_scale,
1141
+ causal=causal,
1142
+ )
1143
+
1144
+ return attn_output
1145
+
1146
+ def _upad_input(
1147
+ self, query_layer, key_layer, value_layer, attention_mask, query_length
1148
+ ):
1149
+ indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
1150
+ batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
1151
+
1152
+ key_layer = index_first_axis(
1153
+ key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim),
1154
+ indices_k,
1155
+ )
1156
+ value_layer = index_first_axis(
1157
+ value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim),
1158
+ indices_k,
1159
+ )
1160
+ if query_length == kv_seq_len:
1161
+ query_layer = index_first_axis(
1162
+ query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim),
1163
+ indices_k,
1164
+ )
1165
+ cu_seqlens_q = cu_seqlens_k
1166
+ max_seqlen_in_batch_q = max_seqlen_in_batch_k
1167
+ indices_q = indices_k
1168
+ elif query_length == 1:
1169
+ max_seqlen_in_batch_q = 1
1170
+ cu_seqlens_q = torch.arange(
1171
+ batch_size + 1, dtype=torch.int32, device=query_layer.device
1172
+ ) # There is a memcpy here, that is very bad.
1173
+ indices_q = cu_seqlens_q[:-1]
1174
+ query_layer = query_layer.squeeze(1)
1175
+ else:
1176
+ # The -q_len: slice assumes left padding.
1177
+ attention_mask = attention_mask[:, -query_length:]
1178
+ query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(
1179
+ query_layer, attention_mask
1180
+ )
1181
+
1182
+ return (
1183
+ query_layer,
1184
+ key_layer,
1185
+ value_layer,
1186
+ indices_q,
1187
+ (cu_seqlens_q, cu_seqlens_k),
1188
+ (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
1189
+ )
1190
+
1191
+
1192
+ ATTENTION_CLASSES = {
1193
+ "eager": DeepseekV2Attention,
1194
+ "flash_attention_2": DeepseekV2FlashAttention2,
1195
+ }
1196
+
1197
+
1198
+ class DeepseekV2DecoderLayer(nn.Module):
1199
+ def __init__(self, config: DeepseekV2Config, layer_idx: int):
1200
+ super().__init__()
1201
+ self.hidden_size = config.hidden_size
1202
+
1203
+ self.self_attn = ATTENTION_CLASSES[config._attn_implementation](
1204
+ config=config, layer_idx=layer_idx
1205
+ )
1206
+
1207
+ self.mlp = (
1208
+ DeepseekV2MoE(config)
1209
+ if (
1210
+ config.n_routed_experts is not None
1211
+ and layer_idx >= config.first_k_dense_replace
1212
+ and layer_idx % config.moe_layer_freq == 0
1213
+ )
1214
+ else DeepseekV2MLP(config)
1215
+ )
1216
+ self.input_layernorm = DeepseekV2RMSNorm(
1217
+ config.hidden_size, eps=config.rms_norm_eps
1218
+ )
1219
+ self.post_attention_layernorm = DeepseekV2RMSNorm(
1220
+ config.hidden_size, eps=config.rms_norm_eps
1221
+ )
1222
+
1223
+ def forward(
1224
+ self,
1225
+ hidden_states: torch.Tensor,
1226
+ attention_mask: Optional[torch.Tensor] = None,
1227
+ position_ids: Optional[torch.LongTensor] = None,
1228
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
1229
+ output_attentions: Optional[bool] = False,
1230
+ use_cache: Optional[bool] = False,
1231
+ **kwargs,
1232
+ ) -> Tuple[
1233
+ torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]
1234
+ ]:
1235
+ """
1236
+ Args:
1237
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
1238
+ attention_mask (`torch.FloatTensor`, *optional*):
1239
+ attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
1240
+ query_sequence_length, key_sequence_length)` if default attention is used.
1241
+ output_attentions (`bool`, *optional*):
1242
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
1243
+ returned tensors for more detail.
1244
+ use_cache (`bool`, *optional*):
1245
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
1246
+ (see `past_key_values`).
1247
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
1248
+ """
1249
+ if "padding_mask" in kwargs:
1250
+ warnings.warn(
1251
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
1252
+ )
1253
+ residual = hidden_states
1254
+
1255
+ hidden_states = self.input_layernorm(hidden_states)
1256
+
1257
+ # Self Attention
1258
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
1259
+ hidden_states=hidden_states,
1260
+ attention_mask=attention_mask,
1261
+ position_ids=position_ids,
1262
+ past_key_value=past_key_value,
1263
+ output_attentions=output_attentions,
1264
+ use_cache=use_cache,
1265
+ **kwargs,
1266
+ )
1267
+ hidden_states = residual + hidden_states
1268
+
1269
+ # Fully Connected
1270
+ residual = hidden_states
1271
+ hidden_states = self.post_attention_layernorm(hidden_states)
1272
+ hidden_states = self.mlp(hidden_states)
1273
+ hidden_states = residual + hidden_states
1274
+
1275
+ outputs = (hidden_states,)
1276
+
1277
+ if output_attentions:
1278
+ outputs += (self_attn_weights,)
1279
+
1280
+ if use_cache:
1281
+ outputs += (present_key_value,)
1282
+
1283
+ return outputs
1284
+
1285
+
1286
+ DeepseekV2_START_DOCSTRING = r"""
1287
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
1288
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
1289
+ etc.)
1290
+
1291
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
1292
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
1293
+ and behavior.
1294
+
1295
+ Parameters:
1296
+ config ([`DeepseekV2Config`]):
1297
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
1298
+ load the weights associated with the model, only the configuration. Check out the
1299
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
1300
+ """
1301
+
1302
+
1303
+ @add_start_docstrings(
1304
+ "The bare DeepseekV2 Model outputting raw hidden-states without any specific head on top.",
1305
+ DeepseekV2_START_DOCSTRING,
1306
+ )
1307
+ class DeepseekV2PreTrainedModel(PreTrainedModel):
1308
+ config_class = DeepseekV2Config
1309
+ base_model_prefix = "model"
1310
+ supports_gradient_checkpointing = True
1311
+ _no_split_modules = ["DeepseekV2DecoderLayer"]
1312
+ _skip_keys_device_placement = "past_key_values"
1313
+ _supports_flash_attn_2 = True
1314
+ _supports_cache_class = True
1315
+
1316
+ def _init_weights(self, module):
1317
+ std = self.config.initializer_range
1318
+ if isinstance(module, nn.Linear):
1319
+ module.weight.data.normal_(mean=0.0, std=std)
1320
+ if module.bias is not None:
1321
+ module.bias.data.zero_()
1322
+ elif isinstance(module, nn.Embedding):
1323
+ module.weight.data.normal_(mean=0.0, std=std)
1324
+ if module.padding_idx is not None:
1325
+ module.weight.data[module.padding_idx].zero_()
1326
+
1327
+
1328
+ DeepseekV2_INPUTS_DOCSTRING = r"""
1329
+ Args:
1330
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
1331
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
1332
+ it.
1333
+
1334
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
1335
+ [`PreTrainedTokenizer.__call__`] for details.
1336
+
1337
+ [What are input IDs?](../glossary#input-ids)
1338
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
1339
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
1340
+
1341
+ - 1 for tokens that are **not masked**,
1342
+ - 0 for tokens that are **masked**.
1343
+
1344
+ [What are attention masks?](../glossary#attention-mask)
1345
+
1346
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
1347
+ [`PreTrainedTokenizer.__call__`] for details.
1348
+
1349
+ If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
1350
+ `past_key_values`).
1351
+
1352
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
1353
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
1354
+ information on the default strategy.
1355
+
1356
+ - 1 indicates the head is **not masked**,
1357
+ - 0 indicates the head is **masked**.
1358
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1359
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
1360
+ config.n_positions - 1]`.
1361
+
1362
+ [What are position IDs?](../glossary#position-ids)
1363
+ past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
1364
+ Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
1365
+ blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
1366
+ returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
1367
+
1368
+ Two formats are allowed:
1369
+ - a [`~cache_utils.Cache`] instance;
1370
+ - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
1371
+ shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
1372
+ cache format.
1373
+
1374
+ The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
1375
+ legacy cache format will be returned.
1376
+
1377
+ If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
1378
+ have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
1379
+ of shape `(batch_size, sequence_length)`.
1380
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
1381
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
1382
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
1383
+ model's internal embedding lookup matrix.
1384
+ use_cache (`bool`, *optional*):
1385
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
1386
+ `past_key_values`).
1387
+ output_attentions (`bool`, *optional*):
1388
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
1389
+ tensors for more detail.
1390
+ output_hidden_states (`bool`, *optional*):
1391
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
1392
+ more detail.
1393
+ return_dict (`bool`, *optional*):
1394
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
1395
+ """
1396
+
1397
+
1398
+ @add_start_docstrings(
1399
+ "The bare DeepseekV2 Model outputting raw hidden-states without any specific head on top.",
1400
+ DeepseekV2_START_DOCSTRING,
1401
+ )
1402
+ class DeepseekV2Model(DeepseekV2PreTrainedModel):
1403
+ """
1404
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`DeepseekV2DecoderLayer`]
1405
+
1406
+ Args:
1407
+ config: DeepseekV2Config
1408
+ """
1409
+
1410
+ def __init__(self, config: DeepseekV2Config):
1411
+ super().__init__(config)
1412
+ self.padding_idx = config.pad_token_id
1413
+ self.vocab_size = config.vocab_size
1414
+
1415
+ self.embed_tokens = nn.Embedding(
1416
+ config.vocab_size, config.hidden_size, self.padding_idx
1417
+ )
1418
+ self.layers = nn.ModuleList(
1419
+ [
1420
+ DeepseekV2DecoderLayer(config, layer_idx)
1421
+ for layer_idx in range(config.num_hidden_layers)
1422
+ ]
1423
+ )
1424
+ self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
1425
+ self.norm = DeepseekV2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
1426
+
1427
+ self.gradient_checkpointing = False
1428
+ # Initialize weights and apply final processing
1429
+ self.post_init()
1430
+
1431
+ def get_input_embeddings(self):
1432
+ return self.embed_tokens
1433
+
1434
+ def set_input_embeddings(self, value):
1435
+ self.embed_tokens = value
1436
+
1437
+ @add_start_docstrings_to_model_forward(DeepseekV2_INPUTS_DOCSTRING)
1438
+ def forward(
1439
+ self,
1440
+ input_ids: torch.LongTensor = None,
1441
+ attention_mask: Optional[torch.Tensor] = None,
1442
+ position_ids: Optional[torch.LongTensor] = None,
1443
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1444
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1445
+ use_cache: Optional[bool] = None,
1446
+ output_attentions: Optional[bool] = None,
1447
+ output_hidden_states: Optional[bool] = None,
1448
+ return_dict: Optional[bool] = None,
1449
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
1450
+ output_attentions = (
1451
+ output_attentions
1452
+ if output_attentions is not None
1453
+ else self.config.output_attentions
1454
+ )
1455
+ output_hidden_states = (
1456
+ output_hidden_states
1457
+ if output_hidden_states is not None
1458
+ else self.config.output_hidden_states
1459
+ )
1460
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
1461
+
1462
+ return_dict = (
1463
+ return_dict if return_dict is not None else self.config.use_return_dict
1464
+ )
1465
+
1466
+ # retrieve input_ids and inputs_embeds
1467
+ if input_ids is not None and inputs_embeds is not None:
1468
+ raise ValueError(
1469
+ "You cannot specify both input_ids and inputs_embeds at the same time"
1470
+ )
1471
+ elif input_ids is not None:
1472
+ batch_size, seq_length = input_ids.shape[:2]
1473
+ elif inputs_embeds is not None:
1474
+ batch_size, seq_length = inputs_embeds.shape[:2]
1475
+ else:
1476
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
1477
+
1478
+ if self.gradient_checkpointing and self.training:
1479
+ if use_cache:
1480
+ logger.warning_once(
1481
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`transformers."
1482
+ )
1483
+ use_cache = False
1484
+
1485
+ past_key_values_length = 0
1486
+ if use_cache:
1487
+ use_legacy_cache = not isinstance(past_key_values, Cache)
1488
+ if use_legacy_cache:
1489
+ past_key_values = DynamicCache.from_legacy_cache(past_key_values)
1490
+ past_key_values_length = past_key_values.get_usable_length(seq_length)
1491
+
1492
+ if position_ids is None:
1493
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
1494
+ position_ids = torch.arange(
1495
+ past_key_values_length,
1496
+ seq_length + past_key_values_length,
1497
+ dtype=torch.long,
1498
+ device=device,
1499
+ )
1500
+ position_ids = position_ids.unsqueeze(0)
1501
+
1502
+ if inputs_embeds is None:
1503
+ inputs_embeds = self.embed_tokens(input_ids)
1504
+
1505
+ if self._use_flash_attention_2:
1506
+ # 2d mask is passed through the layers
1507
+ attention_mask = (
1508
+ attention_mask
1509
+ if (attention_mask is not None and 0 in attention_mask)
1510
+ else None
1511
+ )
1512
+ else:
1513
+ # 4d mask is passed through the layers
1514
+ attention_mask = _prepare_4d_causal_attention_mask(
1515
+ attention_mask,
1516
+ (batch_size, seq_length),
1517
+ inputs_embeds,
1518
+ past_key_values_length,
1519
+ )
1520
+
1521
+ # embed positions
1522
+ hidden_states = inputs_embeds
1523
+
1524
+ # decoder layers
1525
+ all_hidden_states = () if output_hidden_states else None
1526
+ all_self_attns = () if output_attentions else None
1527
+ next_decoder_cache = None
1528
+
1529
+ for decoder_layer in self.layers:
1530
+ if output_hidden_states:
1531
+ all_hidden_states += (hidden_states,)
1532
+
1533
+ if self.gradient_checkpointing and self.training:
1534
+ layer_outputs = self._gradient_checkpointing_func(
1535
+ decoder_layer.__call__,
1536
+ hidden_states,
1537
+ attention_mask,
1538
+ position_ids,
1539
+ past_key_values,
1540
+ output_attentions,
1541
+ use_cache,
1542
+ )
1543
+ else:
1544
+ layer_outputs = decoder_layer(
1545
+ hidden_states,
1546
+ attention_mask=attention_mask,
1547
+ position_ids=position_ids,
1548
+ past_key_value=past_key_values,
1549
+ output_attentions=output_attentions,
1550
+ use_cache=use_cache,
1551
+ )
1552
+
1553
+ hidden_states = layer_outputs[0]
1554
+
1555
+ if use_cache:
1556
+ next_decoder_cache = layer_outputs[2 if output_attentions else 1]
1557
+
1558
+ if output_attentions:
1559
+ all_self_attns += (layer_outputs[1],)
1560
+
1561
+ hidden_states = self.norm(hidden_states)
1562
+
1563
+ # add hidden states from the last decoder layer
1564
+ if output_hidden_states:
1565
+ all_hidden_states += (hidden_states,)
1566
+
1567
+ next_cache = None
1568
+ if use_cache:
1569
+ next_cache = (
1570
+ next_decoder_cache.to_legacy_cache()
1571
+ if use_legacy_cache
1572
+ else next_decoder_cache
1573
+ )
1574
+ if not return_dict:
1575
+ return tuple(
1576
+ v
1577
+ for v in [hidden_states, next_cache, all_hidden_states, all_self_attns]
1578
+ if v is not None
1579
+ )
1580
+ return BaseModelOutputWithPast(
1581
+ last_hidden_state=hidden_states,
1582
+ past_key_values=next_cache,
1583
+ hidden_states=all_hidden_states,
1584
+ attentions=all_self_attns,
1585
+ )
1586
+
1587
+
1588
+ class DeepseekV2ForCausalLM(DeepseekV2PreTrainedModel):
1589
+ _tied_weights_keys = ["lm_head.weight"]
1590
+
1591
+ def __init__(self, config):
1592
+ super().__init__(config)
1593
+ self.model = DeepseekV2Model(config)
1594
+ self.vocab_size = config.vocab_size
1595
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
1596
+
1597
+ # Initialize weights and apply final processing
1598
+ self.post_init()
1599
+
1600
+ def get_input_embeddings(self):
1601
+ return self.model.embed_tokens
1602
+
1603
+ def set_input_embeddings(self, value):
1604
+ self.model.embed_tokens = value
1605
+
1606
+ def get_output_embeddings(self):
1607
+ return self.lm_head
1608
+
1609
+ def set_output_embeddings(self, new_embeddings):
1610
+ self.lm_head = new_embeddings
1611
+
1612
+ def set_decoder(self, decoder):
1613
+ self.model = decoder
1614
+
1615
+ def get_decoder(self):
1616
+ return self.model
1617
+
1618
+ @add_start_docstrings_to_model_forward(DeepseekV2_INPUTS_DOCSTRING)
1619
+ @replace_return_docstrings(
1620
+ output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC
1621
+ )
1622
+ def forward(
1623
+ self,
1624
+ input_ids: torch.LongTensor = None,
1625
+ attention_mask: Optional[torch.Tensor] = None,
1626
+ position_ids: Optional[torch.LongTensor] = None,
1627
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1628
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1629
+ labels: Optional[torch.LongTensor] = None,
1630
+ use_cache: Optional[bool] = None,
1631
+ output_attentions: Optional[bool] = None,
1632
+ output_hidden_states: Optional[bool] = None,
1633
+ return_dict: Optional[bool] = None,
1634
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
1635
+ r"""
1636
+ Args:
1637
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1638
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, transformers.,
1639
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
1640
+ (masked), the loss is only computed for the tokens with labels in `[0, transformers., config.vocab_size]`.
1641
+
1642
+ Returns:
1643
+
1644
+ Example:
1645
+
1646
+ ```python
1647
+ >>> from transformers import AutoTokenizer, DeepseekV2ForCausalLM
1648
+
1649
+ >>> model = DeepseekV2ForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
1650
+ >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
1651
+
1652
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
1653
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
1654
+
1655
+ >>> # Generate
1656
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
1657
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
1658
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
1659
+ ```"""
1660
+ output_attentions = (
1661
+ output_attentions
1662
+ if output_attentions is not None
1663
+ else self.config.output_attentions
1664
+ )
1665
+ output_hidden_states = (
1666
+ output_hidden_states
1667
+ if output_hidden_states is not None
1668
+ else self.config.output_hidden_states
1669
+ )
1670
+ return_dict = (
1671
+ return_dict if return_dict is not None else self.config.use_return_dict
1672
+ )
1673
+
1674
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
1675
+ outputs = self.model(
1676
+ input_ids=input_ids,
1677
+ attention_mask=attention_mask,
1678
+ position_ids=position_ids,
1679
+ past_key_values=past_key_values,
1680
+ inputs_embeds=inputs_embeds,
1681
+ use_cache=use_cache,
1682
+ output_attentions=output_attentions,
1683
+ output_hidden_states=output_hidden_states,
1684
+ return_dict=return_dict,
1685
+ )
1686
+
1687
+ hidden_states = outputs[0]
1688
+ logits = self.lm_head(hidden_states)
1689
+ logits = logits.float()
1690
+
1691
+ loss = None
1692
+ if labels is not None:
1693
+ # Shift so that tokens < n predict n
1694
+ shift_logits = logits[..., :-1, :].contiguous()
1695
+ shift_labels = labels[..., 1:].contiguous()
1696
+ # Flatten the tokens
1697
+ loss_fct = CrossEntropyLoss()
1698
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
1699
+ shift_labels = shift_labels.view(-1)
1700
+ # Enable model parallelism
1701
+ shift_labels = shift_labels.to(shift_logits.device)
1702
+ loss = loss_fct(shift_logits, shift_labels)
1703
+
1704
+ if not return_dict:
1705
+ output = (logits,) + outputs[1:]
1706
+ return (loss,) + output if loss is not None else output
1707
+
1708
+ return CausalLMOutputWithPast(
1709
+ loss=loss,
1710
+ logits=logits,
1711
+ past_key_values=outputs.past_key_values,
1712
+ hidden_states=outputs.hidden_states,
1713
+ attentions=outputs.attentions,
1714
+ )
1715
+
1716
+ def prepare_inputs_for_generation(
1717
+ self,
1718
+ input_ids,
1719
+ past_key_values=None,
1720
+ attention_mask=None,
1721
+ inputs_embeds=None,
1722
+ **kwargs,
1723
+ ):
1724
+ if past_key_values is not None:
1725
+ if isinstance(past_key_values, Cache):
1726
+ cache_length = past_key_values.get_seq_length()
1727
+ past_length = past_key_values.seen_tokens
1728
+ max_cache_length = past_key_values.get_max_length()
1729
+ else:
1730
+ cache_length = past_length = past_key_values[0][0].shape[2]
1731
+ max_cache_length = None
1732
+
1733
+ # Keep only the unprocessed tokens:
1734
+ # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
1735
+ # some of the inputs are exclusivelly passed as part of the cache (e.g. when passing input_embeds as
1736
+ # input)
1737
+ if (
1738
+ attention_mask is not None
1739
+ and attention_mask.shape[1] > input_ids.shape[1]
1740
+ ):
1741
+ input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
1742
+ # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
1743
+ # input_ids based on the past_length.
1744
+ elif past_length < input_ids.shape[1]:
1745
+ input_ids = input_ids[:, past_length:]
1746
+ # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
1747
+
1748
+ # If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
1749
+ if (
1750
+ max_cache_length is not None
1751
+ and attention_mask is not None
1752
+ and cache_length + input_ids.shape[1] > max_cache_length
1753
+ ):
1754
+ attention_mask = attention_mask[:, -max_cache_length:]
1755
+
1756
+ position_ids = kwargs.get("position_ids", None)
1757
+ if attention_mask is not None and position_ids is None:
1758
+ # create position_ids on the fly for batch generation
1759
+ position_ids = attention_mask.long().cumsum(-1) - 1
1760
+ position_ids.masked_fill_(attention_mask == 0, 1)
1761
+ if past_key_values:
1762
+ position_ids = position_ids[:, -input_ids.shape[1] :]
1763
+
1764
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
1765
+ if inputs_embeds is not None and past_key_values is None:
1766
+ model_inputs = {"inputs_embeds": inputs_embeds}
1767
+ else:
1768
+ model_inputs = {"input_ids": input_ids}
1769
+
1770
+ model_inputs.update(
1771
+ {
1772
+ "position_ids": position_ids,
1773
+ "past_key_values": past_key_values,
1774
+ "use_cache": kwargs.get("use_cache"),
1775
+ "attention_mask": attention_mask,
1776
+ }
1777
+ )
1778
+ return model_inputs
1779
+
1780
+ @staticmethod
1781
+ def _reorder_cache(past_key_values, beam_idx):
1782
+ reordered_past = ()
1783
+ for layer_past in past_key_values:
1784
+ reordered_past += (
1785
+ tuple(
1786
+ past_state.index_select(0, beam_idx.to(past_state.device))
1787
+ for past_state in layer_past
1788
+ ),
1789
+ )
1790
+ return reordered_past
1791
+
1792
+
1793
+ @add_start_docstrings(
1794
+ """
1795
+ The DeepseekV2 Model transformer with a sequence classification head on top (linear layer).
1796
+
1797
+ [`DeepseekV2ForSequenceClassification`] uses the last token in order to do the classification, as other causal models
1798
+ (e.g. GPT-2) do.
1799
+
1800
+ Since it does classification on the last token, it requires to know the position of the last token. If a
1801
+ `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
1802
+ no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
1803
+ padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
1804
+ each row of the batch).
1805
+ """,
1806
+ DeepseekV2_START_DOCSTRING,
1807
+ )
1808
+ class DeepseekV2ForSequenceClassification(DeepseekV2PreTrainedModel):
1809
+ def __init__(self, config):
1810
+ super().__init__(config)
1811
+ self.num_labels = config.num_labels
1812
+ self.model = DeepseekV2Model(config)
1813
+ self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
1814
+
1815
+ # Initialize weights and apply final processing
1816
+ self.post_init()
1817
+
1818
+ def get_input_embeddings(self):
1819
+ return self.model.embed_tokens
1820
+
1821
+ def set_input_embeddings(self, value):
1822
+ self.model.embed_tokens = value
1823
+
1824
+ @add_start_docstrings_to_model_forward(DeepseekV2_INPUTS_DOCSTRING)
1825
+ def forward(
1826
+ self,
1827
+ input_ids: torch.LongTensor = None,
1828
+ attention_mask: Optional[torch.Tensor] = None,
1829
+ position_ids: Optional[torch.LongTensor] = None,
1830
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1831
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1832
+ labels: Optional[torch.LongTensor] = None,
1833
+ use_cache: Optional[bool] = None,
1834
+ output_attentions: Optional[bool] = None,
1835
+ output_hidden_states: Optional[bool] = None,
1836
+ return_dict: Optional[bool] = None,
1837
+ ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
1838
+ r"""
1839
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1840
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, transformers.,
1841
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1842
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1843
+ """
1844
+ return_dict = (
1845
+ return_dict if return_dict is not None else self.config.use_return_dict
1846
+ )
1847
+
1848
+ transformer_outputs = self.model(
1849
+ input_ids,
1850
+ attention_mask=attention_mask,
1851
+ position_ids=position_ids,
1852
+ past_key_values=past_key_values,
1853
+ inputs_embeds=inputs_embeds,
1854
+ use_cache=use_cache,
1855
+ output_attentions=output_attentions,
1856
+ output_hidden_states=output_hidden_states,
1857
+ return_dict=return_dict,
1858
+ )
1859
+ hidden_states = transformer_outputs[0]
1860
+ logits = self.score(hidden_states)
1861
+
1862
+ if input_ids is not None:
1863
+ batch_size = input_ids.shape[0]
1864
+ else:
1865
+ batch_size = inputs_embeds.shape[0]
1866
+
1867
+ if self.config.pad_token_id is None and batch_size != 1:
1868
+ raise ValueError(
1869
+ "Cannot handle batch sizes > 1 if no padding token is defined."
1870
+ )
1871
+ if self.config.pad_token_id is None:
1872
+ sequence_lengths = -1
1873
+ else:
1874
+ if input_ids is not None:
1875
+ sequence_lengths = (
1876
+ torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
1877
+ ).to(logits.device)
1878
+ else:
1879
+ sequence_lengths = -1
1880
+
1881
+ pooled_logits = logits[
1882
+ torch.arange(batch_size, device=logits.device), sequence_lengths
1883
+ ]
1884
+
1885
+ loss = None
1886
+ if labels is not None:
1887
+ labels = labels.to(logits.device)
1888
+ if self.config.problem_type is None:
1889
+ if self.num_labels == 1:
1890
+ self.config.problem_type = "regression"
1891
+ elif self.num_labels > 1 and (
1892
+ labels.dtype == torch.long or labels.dtype == torch.int
1893
+ ):
1894
+ self.config.problem_type = "single_label_classification"
1895
+ else:
1896
+ self.config.problem_type = "multi_label_classification"
1897
+
1898
+ if self.config.problem_type == "regression":
1899
+ loss_fct = MSELoss()
1900
+ if self.num_labels == 1:
1901
+ loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
1902
+ else:
1903
+ loss = loss_fct(pooled_logits, labels)
1904
+ elif self.config.problem_type == "single_label_classification":
1905
+ loss_fct = CrossEntropyLoss()
1906
+ loss = loss_fct(
1907
+ pooled_logits.view(-1, self.num_labels), labels.view(-1)
1908
+ )
1909
+ elif self.config.problem_type == "multi_label_classification":
1910
+ loss_fct = BCEWithLogitsLoss()
1911
+ loss = loss_fct(pooled_logits, labels)
1912
+ if not return_dict:
1913
+ output = (pooled_logits,) + transformer_outputs[1:]
1914
+ return ((loss,) + output) if loss is not None else output
1915
+
1916
+ return SequenceClassifierOutputWithPast(
1917
+ loss=loss,
1918
+ logits=pooled_logits,
1919
+ past_key_values=transformer_outputs.past_key_values,
1920
+ hidden_states=transformer_outputs.hidden_states,
1921
+ attentions=transformer_outputs.attentions,
1922
+ )