metadata
license: llama2
library_name: peft
tags:
- generated_from_trainer
base_model: codellama/CodeLlama-13b-Instruct-hf
model-index:
- name: stg-cli13b-t7-cdp-ca.dt.hlms.cln.inter-b4s1e1-20240102-0727
results: []
stg-cli13b-t7-cdp-ca.dt.hlms.cln.inter-b4s1e1-20240102-0727
This model is a fine-tuned version of codellama/CodeLlama-13b-Instruct-hf on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0656
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 1
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.4007 | 0.02 | 100 | 0.0985 |
0.0888 | 0.04 | 200 | 0.0823 |
0.0834 | 0.05 | 300 | 0.0800 |
0.0783 | 0.07 | 400 | 0.0799 |
0.0782 | 0.09 | 500 | 0.0755 |
0.0798 | 0.11 | 600 | 0.0771 |
0.077 | 0.13 | 700 | 0.0734 |
0.0747 | 0.14 | 800 | 0.0745 |
0.076 | 0.16 | 900 | 0.0727 |
0.0791 | 0.18 | 1000 | 0.0775 |
0.0752 | 0.2 | 1100 | 0.0717 |
0.0721 | 0.22 | 1200 | 0.0729 |
0.0731 | 0.23 | 1300 | 0.0710 |
0.0832 | 0.25 | 1400 | 0.0727 |
0.0722 | 0.27 | 1500 | 0.0715 |
0.0738 | 0.29 | 1600 | 0.0715 |
0.071 | 0.31 | 1700 | 0.0705 |
0.0738 | 0.32 | 1800 | 0.0713 |
0.075 | 0.34 | 1900 | 0.0710 |
0.0732 | 0.36 | 2000 | 0.0703 |
0.0712 | 0.38 | 2100 | 0.0701 |
0.0702 | 0.4 | 2200 | 0.0699 |
0.0733 | 0.41 | 2300 | 0.0697 |
0.0739 | 0.43 | 2400 | 0.0691 |
0.0688 | 0.45 | 2500 | 0.0684 |
0.0692 | 0.47 | 2600 | 0.0689 |
0.0727 | 0.49 | 2700 | 0.0690 |
0.073 | 0.5 | 2800 | 0.0685 |
0.0752 | 0.52 | 2900 | 0.0691 |
0.0696 | 0.54 | 3000 | 0.0681 |
0.0708 | 0.56 | 3100 | 0.0684 |
0.072 | 0.58 | 3200 | 0.0681 |
0.0716 | 0.59 | 3300 | 0.0689 |
0.0723 | 0.61 | 3400 | 0.0678 |
0.0678 | 0.63 | 3500 | 0.0676 |
0.0695 | 0.65 | 3600 | 0.0672 |
0.0689 | 0.67 | 3700 | 0.0676 |
0.0716 | 0.68 | 3800 | 0.0671 |
0.07 | 0.7 | 3900 | 0.0667 |
0.0683 | 0.72 | 4000 | 0.0665 |
0.0704 | 0.74 | 4100 | 0.0664 |
0.0702 | 0.76 | 4200 | 0.0665 |
0.0678 | 0.77 | 4300 | 0.0662 |
0.0679 | 0.79 | 4400 | 0.0661 |
0.069 | 0.81 | 4500 | 0.0660 |
0.0675 | 0.83 | 4600 | 0.0661 |
0.0682 | 0.85 | 4700 | 0.0660 |
0.0697 | 0.86 | 4800 | 0.0659 |
0.0689 | 0.88 | 4900 | 0.0658 |
0.0665 | 0.9 | 5000 | 0.0658 |
0.067 | 0.92 | 5100 | 0.0657 |
0.0666 | 0.94 | 5200 | 0.0657 |
0.0704 | 0.95 | 5300 | 0.0656 |
0.0682 | 0.97 | 5400 | 0.0656 |
0.0663 | 0.99 | 5500 | 0.0656 |
Framework versions
- Transformers 4.37.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.15.0
- Tokenizers 0.15.0
Training procedure
The following bitsandbytes
quantization config was used during training:
- quant_method: QuantizationMethod.BITS_AND_BYTES
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
Framework versions
- PEFT 0.6.2