Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -1,199 +1,143 @@
|
|
1 |
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
-
# Model Card for Model
|
7 |
-
|
8 |
-
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
-
|
10 |
|
|
|
11 |
|
12 |
## Model Details
|
13 |
|
14 |
### Model Description
|
15 |
|
16 |
-
|
17 |
-
|
18 |
-
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
19 |
|
20 |
-
-
|
21 |
-
- **Funded by [optional]:** [More Information Needed]
|
22 |
-
- **Shared by [optional]:** [More Information Needed]
|
23 |
-
- **Model type:** [More Information Needed]
|
24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
25 |
-
- **License:** [More Information Needed]
|
26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
- **
|
33 |
-
- **Paper [optional]:** [More Information Needed]
|
34 |
-
- **Demo [optional]:** [More Information Needed]
|
35 |
|
36 |
## Uses
|
37 |
|
38 |
-
|
39 |
|
40 |
### Direct Use
|
41 |
|
42 |
-
|
43 |
-
|
44 |
-
[More Information Needed]
|
45 |
-
|
46 |
-
### Downstream Use [optional]
|
47 |
-
|
48 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
-
|
50 |
-
[More Information Needed]
|
51 |
|
52 |
### Out-of-Scope Use
|
53 |
|
54 |
-
|
55 |
-
|
56 |
-
[More Information Needed]
|
57 |
|
58 |
## Bias, Risks, and Limitations
|
59 |
|
60 |
-
|
61 |
-
|
62 |
-
[More Information Needed]
|
63 |
|
64 |
### Recommendations
|
65 |
|
66 |
-
|
67 |
-
|
68 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
|
70 |
## How to Get Started with the Model
|
71 |
|
72 |
-
|
|
|
|
|
73 |
|
74 |
-
|
|
|
|
|
|
|
|
|
75 |
|
76 |
-
|
77 |
|
78 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
|
80 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
|
82 |
-
|
83 |
|
84 |
-
|
85 |
|
86 |
-
|
87 |
|
88 |
-
|
89 |
|
90 |
-
|
91 |
|
|
|
92 |
|
93 |
#### Training Hyperparameters
|
94 |
|
95 |
-
- **Training regime:**
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
|
103 |
## Evaluation
|
104 |
|
105 |
-
|
106 |
|
107 |
### Testing Data, Factors & Metrics
|
108 |
|
109 |
#### Testing Data
|
110 |
|
111 |
-
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
|
115 |
#### Factors
|
116 |
|
117 |
-
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
|
121 |
#### Metrics
|
122 |
|
123 |
-
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
|
127 |
### Results
|
128 |
|
129 |
-
|
130 |
|
131 |
#### Summary
|
132 |
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
## Environmental Impact
|
142 |
|
143 |
-
|
144 |
|
145 |
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
|
147 |
-
- **Hardware Type:**
|
148 |
-
- **Hours used:**
|
149 |
-
- **Cloud Provider:**
|
150 |
-
- **Compute Region:**
|
151 |
-
- **Carbon Emitted:**
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
|
155 |
### Model Architecture and Objective
|
156 |
|
157 |
-
|
158 |
|
159 |
### Compute Infrastructure
|
160 |
|
161 |
-
|
162 |
|
163 |
#### Hardware
|
164 |
|
165 |
-
|
166 |
|
167 |
#### Software
|
168 |
|
169 |
-
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
|
197 |
## Model Card Contact
|
198 |
|
199 |
-
|
|
|
1 |
---
|
2 |
+
base_model: TurkuNLP/gpt3-finnish-3B
|
3 |
+
license: apache-2.0
|
4 |
+
datasets:
|
5 |
+
- TurkuNLP/squad_v2_fi
|
6 |
+
language:
|
7 |
+
- fi
|
8 |
+
pipeline_tag: text-generation
|
9 |
---
|
10 |
|
11 |
+
# Model Card for Model Futurice/gpt3-finnish-3B-instruct
|
|
|
|
|
|
|
12 |
|
13 |
+
The model gpt3-finnish-3B-instruct is an instruction fine-tuned model intended for RAG type Q&A in Finnish.
|
14 |
|
15 |
## Model Details
|
16 |
|
17 |
### Model Description
|
18 |
|
19 |
+
The gpt3-finnish-3B-instruct model is based on TurkuNLP Finnish GPT-3-models. They are a model family of pretrained monolingual GPT-style language models, based on BLOOM-architecture.
|
|
|
|
|
20 |
|
21 |
+
The model was fine-tuned using a sample of dataset TurkuNLP/squad_v2_fi, that was DeepL translated from SQuAD2.0.
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
+
- **Developed by:** Martti Sutinen
|
24 |
+
- **Model type:** Bloom
|
25 |
+
- **Language(s) (NLP):** Finnish
|
26 |
+
- **License:** Apache-2.0
|
27 |
+
- **Finetuned from model:** TurkuNLP/gpt3-finnish-large
|
|
|
|
|
28 |
|
29 |
## Uses
|
30 |
|
31 |
+
Intended for RAG type Q&A in Finnish.
|
32 |
|
33 |
### Direct Use
|
34 |
|
35 |
+
Intended for text generation and RAG type Q&A in Finnish. Supply a context and ask a question about it.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
### Out-of-Scope Use
|
38 |
|
39 |
+
Please do not misuse the model. Not recommended for other use cases.
|
|
|
|
|
40 |
|
41 |
## Bias, Risks, and Limitations
|
42 |
|
43 |
+
A key limitation is simple and limited selection of fine-tuning data. Please do not expect high quality answers.
|
|
|
|
|
44 |
|
45 |
### Recommendations
|
46 |
|
47 |
+
Recommeded to continue fine-tuning with more data or newer architecture.
|
|
|
|
|
48 |
|
49 |
## How to Get Started with the Model
|
50 |
|
51 |
+
- Recommended system message: "Olet avustaja. Seuraavaksi saat kysymyksen tai tehtävän. Kirjoita vastaus parhaasi mukaan siten että se täyttää kysymyksen tai tehtävän vaatimukset."
|
52 |
+
- Recommended format for question about context: Tausta: "{context} \n\nKäytä vain taustaa ja vastaa kysymykseen tai tehtävään: {question}"
|
53 |
+
- Prompt format: tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
54 |
|
55 |
+
Where messages with typical format:
|
56 |
+
messages = [
|
57 |
+
{"role": "system", "content": system_message},
|
58 |
+
{"role": "user", "content": prompt_with_context}
|
59 |
+
].
|
60 |
|
61 |
+
Here is what the input could look like:
|
62 |
|
63 |
+
\<s><|im_start|>system
|
64 |
+
Olet avustaja. Seuraavaksi saat kysymyksen tai tehtävän. Kirjoita vastaus parhaasi mukaan siten että se täyttää kysymyksen tai tehtävän vaatimukset.<|im_end|>
|
65 |
+
<|im_start|>user
|
66 |
+
Tausta:
|
67 |
+
Dokumentti luotiin tammikuussa. Sen kirjoittajaa ei tunneta.
|
68 |
+
|
69 |
+
Käytä vain taustaa ja vastaa kysymykseen tai tehtävään: Milloin dokumentti kirjoitettiin?<|im_end|>
|
70 |
+
<|im_start|>assistant
|
71 |
|
|
|
72 |
|
73 |
+
Use pipeline with task text-generation and the recommended format.
|
74 |
|
75 |
+
## Training Details
|
76 |
|
77 |
+
### Training Data
|
78 |
|
79 |
+
Trained with 20000 random samples from test data in: [TurkuNLP/squad_v2_fi](https://huggingface.co/datasets/TurkuNLP/squad_v2_fi).
|
80 |
|
81 |
+
### Training Procedure
|
82 |
|
83 |
+
Training was done for 4-bit base model with supervised fine-tuning and Lora.
|
84 |
|
85 |
#### Training Hyperparameters
|
86 |
|
87 |
+
- **Training regime:** 4-bit, batch size 2, max steps 20000, data collator for completion only
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
|
89 |
## Evaluation
|
90 |
|
91 |
+
Evaluation has not been done properly yet.
|
92 |
|
93 |
### Testing Data, Factors & Metrics
|
94 |
|
95 |
#### Testing Data
|
96 |
|
97 |
+
Evaluated with 1000 random samples from test data in: [TurkuNLP/squad_v2_fi](https://huggingface.co/datasets/TurkuNLP/squad_v2_fi).
|
|
|
|
|
98 |
|
99 |
#### Factors
|
100 |
|
101 |
+
Same factors as in SQuAD2.0.
|
|
|
|
|
102 |
|
103 |
#### Metrics
|
104 |
|
105 |
+
Loss.
|
|
|
|
|
106 |
|
107 |
### Results
|
108 |
|
109 |
+
No results to be shared yet.
|
110 |
|
111 |
#### Summary
|
112 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
113 |
## Environmental Impact
|
114 |
|
115 |
+
Environmental impact not yet evaluated.
|
116 |
|
117 |
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
118 |
|
119 |
+
- **Hardware Type:** Mostly trained on A100
|
120 |
+
- **Hours used:** 5-10 hours
|
121 |
+
- **Cloud Provider:** GCP
|
122 |
+
- **Compute Region:** Unknown
|
123 |
+
- **Carbon Emitted:** Not evaluated
|
|
|
|
|
124 |
|
125 |
### Model Architecture and Objective
|
126 |
|
127 |
+
Bloom.
|
128 |
|
129 |
### Compute Infrastructure
|
130 |
|
131 |
+
Colab.
|
132 |
|
133 |
#### Hardware
|
134 |
|
135 |
+
1 x A100.
|
136 |
|
137 |
#### Software
|
138 |
|
139 |
+
Typical software used.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
|
141 |
## Model Card Contact
|
142 |
|
143 |
+
Martti Sutinen
|